• S M Bawiskar

      Articles written in Journal of Earth System Science

    • Harmonic analysis of summer mean wind at 200 mbar level during contrasting monsoon years over India

      S M Bawiskar S T Awade S S Singh

      More Details Abstract Fulltext PDF

      Summer (June–August) mean zonal and meridional wind components at 200 mbar level are subjected to harmonic analysis for the years 1970, 1971, 1972 and 1979. It is found that the small scale disturbances are intense during normal monsoon years. The westerlies in the belt 10°S to 30°S are stronger during drought years. During normal monsoon years (1970, 1971) the northward transport of westerly momentum by wave number 1 at 19.6°N is large as compared to drought years (1972, 1979). The transport of westerly momentum by standing eddies is northward for all the years between 5°S and 28.7°N but large during the normal monsoon years.

    • Upper and lower tropospheric energetics of standing and transient eddies in wave number domain during summer monsoon of 1991

      S M Bawiskar M D Chipade D K Paul S S Singh

      More Details Abstract Fulltext PDF

      Kinetic energy exchange equations (Saltzman 1957) in wave number domain are partitioned into standing, transient and standing-transient components following Murakami (1978, 1981). These components are computed for the 1991 summer monsoon using dailyu andv grid point data at 2.5° latitude-longitude interval between the equator and 40°N at 200 hPa and 850 hPa levels for the period June through August. The data are obtained from NCMRWF, New Delhi.

      The study shows that at 200 hPa wave number 1 over Region 3 (30°N to 40°N), wave number 2 over Region 2 (15°N to 30°N) and wave number 3 over Region 1 (equator to 15°N) dominate the spectrum of transport of momentum and wave to zonal mean flow interaction. Wave number 1 over Region 1 and Region 3 and wave number 2 over Region 2 are the major sources of kinetic energy to other waves via wave-to-wave interaction. At 850 hPa wave number 1 over Region 3 has maximum contribution in the spectrum of transport of momentum and kinetic energy and more than 90% of its contribution is from the standing component. This indicates that standing wave number 1 over Region 3 plays a very important role in the dynamics of monsoon circulation of the lower troposphere.

      The study further shows that although the circulation patterns at 200 hPa and 850 hPa levels are opposite in character, a number of energy processes exhibit a similar character at these levels. For example, (i) transport of momentum by most of the waves is northward, (ii) small scale eddies intensify northward, (iii) eddies are sources of kinetic energy to zonal mean flow over Region 1 and (iv) standing eddies are sources of kinetic energy to transient eddies. Besides the above similarities some contrasting energy processes are also observed. Over Region 2 and Region 3 standing and transient eddies are sources of kinetic energy to zonal mean flow at 200 hPa, while at 850 hPa the direction of exchange of kinetic energy is opposite i.e. zonal mean flow is a source of kinetic energy to standing as well as transient eddies. L(n) interaction indicates that at 200 hPa waves over R2 maintain waves over R1, while at 850 hPa waves over R1 maintain waves over R2.

      It has been found that the north-south gradient of zonal mean of zonal wind is the deciding factor of wave to zonal mean flow interaction.

    • Intra-seasonal variations of kinetic energy of lower tropospheric zonal waves during northern summer monsoon

      S M Bawiskar M D Chipade S S Singh

      More Details Abstract Fulltext PDF

      Space spectral analysis of zonal (u) and meridional (v) components of wind and time spectral analysis of kinetic energy of zonal waves at 850 hPa during monsoon 1991 (1st June 1991 to 31st August 1991) for the global belt between equator and 40°N are investigated. Space spectral analysis shows that long waves (wavenumbers 1 and 2) dominate the energetics of Region 1 (equator to 20°N) while over Region 2 (20°N to 40°N) the kinetic energy of short waves (wavenumbers 3 to 10) is more than kinetic energy of long waves. It has been found that kinetic energy of long waves is dominated by zonal component while both (zonal and meridional) the components of wind have almost equal contribution in the kinetic energy of short waves.

      Temporal variations of kinetic energy of wavenumber 2 over Region 1 and Region 2 are almost identical. The correlation matrix of different time series shows that (i) wavenumber 2 over Regions 1 and 2 might have the same energy source and (ii) there is a possibility of an exchange of kinetic energy between wavenumber 1 over Region 1 and short waves over Region 2. Wave to wave interactions indicate that short waves over Region 2 are the common source of kinetic energy to wavenumber 2 over Regions 1 and 2 and wavenumber 1 over Region 1. Time spectral analysis of kinetic energy of zonal waves indicates that wavenumber 1 is dominated by 30–45 day and bi-weekly oscillations while short waves are dominated by weekly and bi-weekly oscillations.

      The correlation matrix, wave to wave interaction and time spectral analysis together suggest that short period oscillations of kinetic energy of wavenumber 1 might be one of the factors causing dominant weekly (5–9 day) and bi-weekly (10–18 day) oscillations in the kinetic energy of short waves.

    • Momentum transport of wave zero during March: A possible predictor for the Indian summer monsoon

      S M Bawiskar V R Mujumdar S S Singh

      More Details Abstract Fulltext PDF

      Analysis of monthly momentum transport of zonal waves at 850 hPa for the period 1979 to 1993, between 30°S and 30°N for January to April, using zonal (𝑢) and meridional (𝜐) components of wind taken from the ECMWF reanalysis field, shows a positive correlation (.1% level of significance) between the Indian summer monsoon rainfall (June through September) and the momentum transport of wave zero TM(0) over latitudinal belt between 25°S and 5°N (LB) during March. Northward (Southward) TM(0) observed in March over LB subsequently leads to a good (drought) monsoon season over India which is found to be true even when the year is marked with the El- Nino event. Similarly a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, even if the year is marked with El-Nino. The study thus suggests two predictors, TM(0) over LB and the strength of westerly zone in the Indian Ocean during March.

    • Energetics of lower tropospheric planetary waves over mid latitudes: Precursor for Indian summer monsoon

      S M Bawiskar M D Chipade P V Puranik U V Bhide

      More Details Abstract Fulltext PDF

      Based on NCEP/NCAR reanalysis data, kinetic energy and momentum transport of waves 0 to 10 at 850 hPa level are computed from monthly mean zonal (u) and meridional (v) components of wind from equator to 90‡N. Fourier technique is used to resolve the wind field into a spectrum of waves. Correlation analysis between All India Seasonal Monsoon Rainfall (AISMR) and energetics of the waves indicates that effective kinetic energy of waves 1, 3 and 4 around 37.5‡N in February has significant correlation (99.9%) with the subsequent AISMR. A simple linear regression equation between the effective kinetic energy of these three waves and AISMR is developed. Out of 47 years’ (1958–2004) data, 32 years (1958–1989) are utilized for developing the regression model and the remaining 15 years (1990–2004) are considered for its verification. Predicted AISMR is in close agreement with observed AISMR. The regression equation based on the dynamics of the planetary waves is thus useful for Long Range Forecasting (LRF) of AISMR. Apart from the regression equation, the study provides qualitative predictors. The scatter diagram between AISMR and effective kinetic energy of waves 1, 3 and 4 around 37.5?N indicates that if the kinetic energy is more (less) than 5m2s-2, the subsequent monsoon will be good (weak). Stream function fields indicate that high latitude trough axis along 40‡E (70‡E) leads to a good (weak) monsoon over India.

    • Energetics of lower tropospheric ultra-long waves: A key to intra-seasonal variability of Indian monsoon

      S M Bawiskar M D Chipade P V Puranik

      More Details Abstract Fulltext PDF

      Analysis of fifty four (1951-2004)years of daily energetics of zonal waves derived from NCEP/ NCAR wind (𝑢 and 𝑣 data and daily rainfall received over the Indian landmass (real time data) during southwest monsoon season (1 June-30 September)indicate that energetics (momentum transport and kinetic energy)of lower tropospheric ultra-long waves (waves 1 and 2)of low latitudes hold a key to intra-seasonal variability of monsoon rainfall over India.

      Correlation coefficient between climatology of daily (122 days)energetics of ultra-long waves and climatology of daily rainfall over Indian landmass is 0.9.The relation is not only significant but also has a predictive potential.The normalised plot of both the series clearly indicates that the response period of rainfall to the energetics is of 5-10 days during the onset phase and 4-7 days during the withdrawal phase of monsoon over India.During the established phase of monsoon, both the series move hand-in-hand.Normalised plot of energetics of ultra-long waves and rainfall for individual year do not show marked deviation with respect to climatology.These results are first of its kind and are useful for the short range forecast of rainfall over India.

    • Weakening of lower tropospheric temperature gradient between Indian landmass and neighbouring oceans and its impact on Indian monsoon

      S M Bawiskar

      More Details Abstract Fulltext PDF

      The study shows that in the scenario of global warming temperature gradient (TG) between Indian landmass and Arabian Sea/Bay of Bengal is significantly decreasing in the lower troposphere with maxima around 850 hPa. TG during pre-monsoon (March to May) is reducing at a significant rate of 0.036°/year (Arabian Sea) and 0.030°/year (Bay of Bengal). The above alarming results are based on sixty years (1948–2007) of daily temperature and wind data extracted from CDAS-NCEP/NCAR reanalysis datasets. TG based on ERA-40 data also indicates a decreasing trend of 0.0229°/year and 0.0397°/year for Arabian Sea and Bay of Bengal respectively. As TG is not governed by any type of significant oscillation, there is a possibility of TG tending to zero. It is further observed that the rate of warming over the oceans is more than that over the land which has resulted into the weakening of TG. Pre-monsoon TG has significant correlations with

      All India Seasonal Monsoon Rainfall (AISMR),

      kinetic energy of waves 1 and 2 at 850 hPa,

      kinetic energy, and

      stream function at 850 hPa over Indian landmass during monsoon season.

      Except AISMR, the decreasing trends observed in all the above parameters are significant. All India rainfall for July and August together shows a significant decreasing trend of 0.995mm/year. Reducing number of depressions and cyclonic storms and increasing number of break days during monsoon over India are the reflections of the weakening of TG.

    • Impact of global warming on the energetics of lower tropospheric ultra-long waves and the Indian summer monsoon

      M D Chipade J R Kulkarni S M Bawiskar

      More Details Abstract Fulltext PDF

      Analyses of 60 years (1949–2008) of monthly energetics of the zonal waves derived from NCEP/NCAR data indicate that ultra-long waves (waves 1 and 2) dominate the spectrum of lower tropospheric zonal waves during monsoon season (June–September). Westerlies over the Indian subcontinent are a source of energy to wave 1. Two oceanic anticyclones, one over Pacific and the other over Atlantic are sources of energy to wave 2. These two waves are inversely correlated. Climatology of the energetics of ultralong waves for the two epochs 1949–1978 (CLP1) and 1979–2008 (CLP2) of 30 years indicates that the intensity of wave 1 has decreased by about 33% whereas the intensity of wave 2 has increased by about 27%. Northward transport of sensible heat during CLP1 changes to southward during CLP2. Larger generation of zonal mean Available Potential Energy (APE) during CLP2 indicates more heating. A larger conversion of kinetic energy (KE) of wave 1 into APE of wave 1 leads to weakening of wave 1 during CLP2. In case of wave 2, lower rate of conversion of KE to APE leads to stronger wave 2 during CLP2. slagging and heating values of the coal has been found in this study.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.