S K Satheesh
Articles written in Journal of Earth System Science
Volume 117 Issue S1 July 2008 pp 243-262
Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview
K Krishna Moorthy S K Satheesh S Suresh Babu C B S Dutt
During March–May 2006, an extensive, multi-institution, multi-instrument, and multi-platform integrated field experiment ‘Integrated Campaign for Aerosols, gases and Radiation Budget’ (ICARB) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). The objective of this largest and most exhaustive field campaign, ever conducted in the Indian region, was to characterize the physico-chemical properties and radiative effects of atmospheric aerosols and trace gases over the Indian landmass and the adjoining oceanic regions of the Arabian Sea, northern Indian Ocean, and Bay of Bengal through intensive, simultaneous observations. A network of ground-based observatories (over the mainland and islands), a dedicated ship cruise over the oceanic regions using a fully equipped research vessel, the
The ICARB has revealed significant spatio-temporal heterogeneity in most of the aerosol characteristics both over land and ocean. Observed aerosol loading and optical depths were comparable to or in certain regions, a little lower than those reported in some of the earlier campaigns for these regions. The preliminary results indicate:
low (> 0.2) aerosol optical depths (AOD) over most part of the Arabian Sea, except two pockets; one off Mangalore and the other, less intense, in the central Arabian Sea at ∼18° N latitude;
High ˚Angström exponent in the southern Arabian Sea signifying steep AOD spectra and higher abundance of accumulation mode particles in the southern Arabian Sea and off Mangalore;
Remarkably low ˚Angström exponents signifying increased concentration of coarse mode aerosols and high columnar abundance in the northern Arabian Sea;
Altitude profiles from aircraft showed a steady BC level up to 3 km altitude with structures which were associated with inversions in the atmospheric boundary layer (ABL);
A surprisingly large increase in the BC mass fraction with altitude;
Presence of a convectively mixed layer extending up to about 1 km over the Arabian Sea and Bay of Bengal;
A spatial off shore extent of > 100 km for the anthropogenic impact at the coast; and
Advection of aerosols, through airmass trajectories, from west Asia and NW arid regions of India leading to formation of elevated aerosol layers extending as far as 400 km off the east coast.
Volume 117 Issue S1 July 2008 pp 263-271
S Suresh Babu S K Satheesh K Krishna Moorthy C B S Dutt Vijayakumar S Nair Denny P Alappattu P K Kunhikrishnan
During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) over India, high-resolution airborne measurements of the altitude profiles of the mass concentrations (MB) of aerosol black carbon (BC) were made off Bhubaneswar (BBR, 85.82°E, 20.25°N), over northwest Bay of Bengal, in the altitude region upto 3 km. Such high-resolution measurements of altitude profiles of aerosols are done for the first time over India. The profiles showed a near-steady vertical distribution of MB modulated with two small peaks, one at 800m and the other at ∼2000m. High resolution GPS (Global Positioning System) sonde (Vaisala) measurements around the same region onboard the research vessel
Volume 117 Issue S1 July 2008 pp 303-313
Characteristics of spectral aerosol optical depths over India during ICARB
S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K Satheesh V Vinoj R Ramakrishna Reddy K Rama Gopal K V S Badarinath K Niranjan Santosh Kumar Pandey M Behera A Jeyaram P K Bhuyan M M Gogoi Sacchidanand Singh P Pant U C Dumka Yogesh Kant J C Kuniyal Darshan Singh
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived ˚Angström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The ˚Angström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from the adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the ˚Angström exponent (𝛼) remained significantly lower (∼1) over the Arabian Sea compared to Bay of Bengal (BoB) (∼1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of 𝛼, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in 𝛼 over the BoB.
Volume 117 Issue S1 July 2008 pp 389-397
Aerosol characteristics at a remote island: Minicoy in southern Arabian Sea
V Vinoj S K Satheesh K Krishna Moorthy
Extensive measurements of aerosol optical and microphysical properties made at a remote island, Minicoy in southern Arabian Sea for the period (February 2006–March 2007) are used to characterize their temporal variability and Black Carbon (BC) mass mixing ratio. Large decrease in aerosol BC (from ∼800 ng m−3 to ∼100 ng m−3) was observed associated with change in airmass characteristics and monsoon rains. The total aerosol mass varied between ∼80 and 20 𝜇 g m−3. Though the total mass fell drastically, a slight increase in super micron mass was observed during the June–August period associated with high winds. The mass fraction of Black Carbon aerosols during the prevalence of continental airmass is found to be ∼1.2% of the composite aerosols, which is much lower than the values reported earlier for this region.
Volume 123 Issue 6 August 2014 pp 1249-1264
Nishi Srivastava S K Satheesh Nadège Blond
The objective of this study is to evaluate the ability of a European chemistry transport model, ‘CHIMERE’ driven by the US meteorological model MM5, in simulating aerosol concentrations [dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.
Volume 124 Issue 4 June 2015 pp 875-896
Performance of WRF-Chem over Indian region: Comparison with measurements
Gaurav Govardhan Ravi S Nanjundiah S K Satheesh K Krishnamoorthy V R Kotamarthi
The aerosol mass concentrations over several Indian regions have been simulated using the online chemistry transport model, WRF-Chem, for two distinct seasons of 2011, representing the pre-monsoon (May) and post-monsoon (October) periods during the Indo–US joint experiment ‘Ganges Valley Aerosol Experiment (GVAX)’. The simulated values were compared with concurrent measurements. It is found that the model systematically underestimates near-surface BC mass concentrations as well as columnar Aerosol Optical Depths (AODs) from the measurements. Examining this in the light of the model-simulated meteorological parameters, we notice the model overestimates both planetary boundary layer height (PBLH) and surface wind speeds, leading to deeper mixing and dispersion and hence lower surface concentrations of aerosols. Shortcoming in simulating rainfall pattern also has an impact through the scavenging effect. It also appears that the columnar AODs are influenced by the unrealistic emission scenarios in the model. Comparison with vertical profiles of BC obtained from aircraft-based measurements also shows a systematic underestimation by the model at all levels. It is seen that concentration of other aerosols, viz., dust and sea-salt are closely linked with meteorological conditions prevailing over the region. Dust is higher during pre-monsoon periods due to the prevalence of north-westerly winds that advect dust from deserts of west Asia into the Indo-Gangetic plain. Winds and rainfall influence sea-salt concentrations. Thus, the unrealistic simulation of wind and rainfall leads to model simulated dust and sea-salt also to deviate from the real values; which together with BC also causes underperformance of the model with regard to columnar AOD. It appears that for better simulations of aerosols over Indian region, the model needs an improvement in the simulation of the meteorology.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.