• S Im

      Articles written in Journal of Earth System Science

    • Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea

      E A Combalicer S H Lee S Ahn D Y Kim S Im

      More Details Abstract Fulltext PDF

      Groundwater recharge and base flow using different investigated methods are simulated in the 15-ha Bukmoongol small-forested watershed located at the southern part of Korea.The WHAT system, PART,RORA,PULSE,BFI,and RAP software are used to estimate groundwater recharge or base flow and base flow index from the measured stream flow.Results show that about 15 –31 per cent of annual rainfall might be contributed for base flow.The watershed groundwater recharge proportions are computed to about 10 –21 per cent during the wet period and 23 –32 per cent for the remainder periods.Mean annual base flow indices vary from 0.25 to 0.76 estimated using different methods. However,the study found out that all methods were significantly correlated with each other.The similarity of various methods is expressed as a weighted relationship provided by the matrix product from the principal component analysis.Overall,the BFI and WHAT software appeared consistent in estimating recharge or base flow,and base flow index under Korea ’s conditions.The case study recommends the application of different models to other watersheds as well as in low-lying areas where most observation groundwater wells are located with available stream flow data.

    • Assessing climate change impacts on water balance in the Mount Makiling forest, Philippines

      E A Combalicer R V O Cruz S Lee S Im

      More Details Abstract Fulltext PDF

      A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change impacts based on two scenarios (A1B and A2) from CGCM3 experiment. The annual precipitation change was estimated to be 0.1–9.3% increase for A1B scenario, and −3.3 to 3.3% decrease/increase for the A2 scenario. Difference in the mean temperature between the present and the 2080s were predicted to be 0.6$–$2.2°C and 0.6$–$3.0°C under A1B and A2 scenarios, respectively. The water balance showed that 42% of precipitation is converted into evaporation, 48% into streamflow, and 10% into deep seepage loss. The impacts of climate change on water balance reflected dramatic fluctuations in hydrologic events leading to high evaporation losses, and decrease in streamflow, while groundwater flow appeared unaffected. A study on the changes in monthly water balance provided insights into the hydrologic changes within the forest watershed system which can be used in mitigating the effects of climate change.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.