• S D Kotal

      Articles written in Journal of Earth System Science

    • A Statistical Cyclone Intensity Prediction (SCIP) model for the Bay of Bengal

      S D Kotal S K Roy Bhowmik P K Kundu Ananda Kumar Das

      More Details Abstract Fulltext PDF

      A statistical model for predicting the intensity of tropical cyclones in the Bay of Bengal has been proposed. The model is developed applying multiple linear regression technique. The model parameters are determined from the database of 62 cyclones that developed over the Bay of Bengal during the period 1981–2000. The parameters selected as predictors are: initial storm intensity, intensity changes during past 12 hours, storm motion speed, initial storm latitude position, vertical wind shear averaged along the storm track, vorticity at 850 hPa, Divergence at 200 hPa and sea surface temperature (SST). When the model is tested with the dependent samples of 62 cyclones, the forecast skill of the model for forecasts up to 72 hours is found to be reasonably good. The average absolute errors (AAE) are less than 10 knots for forecasts up to 36 hours and maximum forecast error of order 14 knots occurs at 60 hours and 72 hours. When the model is tested with the independent samples of 15 cyclones (during 2000 to 2007), the AAE is found to be less than 13 knots (ranging from 5.1 to 12.5 knots) for forecast up to 72 hours. The model is found to be superior to the empirical model proposed by Roy Bhowmik et al (2007) for the Bay of Bengal.

    • Growth of cyclone Viyaru and Phailin – a comparative study

      S D Kotal S K Bhattacharya S K Roy Bhowmik P K Kundu

      More Details Abstract Fulltext PDF

      The tropical cyclone Viyaru maintained a unique quasi-uniform intensity during its life span. Despite being in contact with sea surface for < 120 hr travelling about 2150 km, the cyclonic storm (CS) intensity, once attained, did not intensify further, hitherto not exhibited by any other system over the Bay of Bengal. On the contrary, the cyclone Phailin over the Bay of Bengal intensified into very severe cyclonic storm (VSCS) within about 48 hr from its formation as depression. The system also experienced rapid intensification phase (intensity increased by 30 kts or more during subsequent 24 hours) during its life time and maximum intensity reached up to 115 kts. In this paper, a comparative study is carried out to explore the evolution of the various thermodynamical parameters and possible reasons for such converse features of the two cyclones. Analysis of thermodynamical parameters shows that the development of the lower tropospheric and upper tropospheric potential vorticity (PV) was low and quasi-static during the lifecycle of the cyclone Viyaru. For the cyclone Phailin, there was continuous development of the lower tropospheric and upper tropospheric PV, which attained a very high value during its lifecycle. Also there was poor and fluctuating diabatic heating in the middle and upper troposphere and cooling in the lower troposphere for Viyaru. On the contrary, the diabatic heating was positive from lower to upper troposphere with continuous development and increase up to 6°C in the upper troposphere. The analyses of cross sections of diabatic heating, PV, and the 1000–500 hPa geopotential metre (gpm) thickness contours indicate that the cyclone Viyaru was vertically tilted (westward) and lacked axisymmetry in its structure and converse features (axisymmetric and vertical) that occurred for the cyclone Phailin. In addition, there was a penetration of dry air in the middle troposphere of Viyaru, whereas high moisture existed in the middle troposphere of Phailin. The vertical wind shear (5–10 $ms^{−1}$) near the core of the storm region between 850 and 200 hPa was favourable for both the systems but was higher in the northern region of the cyclone Viyaru. The divergent development of these thermodynamic features conspired to produce converse characteristic of the two cyclones.

    • Forecasting of cyclone Viyaru and Phailin by NWP-based cyclone prediction system (CPS) of IMD – an evaluation

      S D Kotal S K Bhattacharya S K Roy Bhowmik P K Kundu

      More Details Abstract Fulltext PDF

      An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model, and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error statistics of the decay model shows that the model was able to predict the decaying intensity after landfall with reasonable accuracy. The performance statistics demonstrates the potential of the system for improving operational cyclone forecast service over the Indian seas.

    • Decadal variation of ocean heat content and tropical cyclone activity over the Bay of Bengal

      Sankar Nath S D Kotal P K Kundu

      More Details Abstract Fulltext PDF

      The upper ocean heat content up to 700 m depth (OHC700) is an important climatic parameter required for atmospheric and oceanographic studies like a cyclone. In this study, therefore, an attempt has been made to examine the inter-decadal variations of tropical cyclone (TC) activity and OHC700 over the Bay of Bengal (BOB) for the post-monsoon season (October–December) during 1955–2013 periods. The sea-surface temperature (SST), geopotential height at 500 hPa, low-level vorticity at 850 hPa, vertical wind shear between 200 and 850 hPa, middle tropospheric humidity at 500 hPa and outgoing long-wave radiation are also being studied using seasonal mean data. The results show a significant inter-decadal variation during 1955–2013, with two distinct decadal periods: active decadal period (ADP) (1955–1988) and inactive decadal period (IDP) (1989–2013). The anomalies of these parameters are opposite in phase for two periods. It is found that the large scale atmospheric features and oceanic parameters have significant inter-decadal variability, but frequency of the tropical cyclone is attributed to the variation in the atmospheric dynamic and thermodynamic conditions rather than the variation of oceanic parameters OHC700 and SSTs during the post-monsoon season.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.