• Rasik Ravindra

      Articles written in Journal of Earth System Science

    • Microtextural and mineral chemical analyses of andesite–dacite from Barren and Narcondam islands: Evidences for magma mixing and petrological implications

      Dwijesh Ray S Rajan Rasik Ravindra Ashim Jana

      More Details Abstract Fulltext PDF

      Andesite and dacite from Barren and Narcondam volcanic islands of Andaman subduction zone are composed of plagioclase, orthopyroxene, clinopyroxene, olivine, titanomagnetite, magnesio-hornblende and rare quartz grains. In this study, we use the results of mineral chemical analyses of the calc-alkaline rock suite of rocks as proxies for magma mixing and mingling processes. Plagioclase, the most dominant mineral, shows zoning which includes oscillatory, patchy, multiple and repetitive zonation and ‘fritted’ or ‘sieve’ textures. Zoning patterns in plagioclase phenocrysts and abrupt fluctuations in An content record different melt conditions in a dynamic magma chamber. ‘Fritted’ zones (An55) are frequently overgrown by thin calcic (An72) plagioclase rims over well-developed dissolution surfaces. These features have probably resulted from mixing of a more silicic magma with the host andesite. Olivine and orthopyroxene with reaction and overgrowth rims (corona) suggest magma mixing processes. We conclude that hybrid magma formed from the mixing of mafic and felsic magma by two-stage processes initial intrusion of hotter mafic melt (andesitic) followed by cooler acidic melt at later stage.

    • Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season

      Parmanand Sharma Lavkush K Patel Rasik Ravindra Ajit Singh K Mahalinganathan Meloth Thamban

      More Details Abstract Fulltext PDF

      As part of the on-going annual mass balance measurements on Batal and Sutri Dhaka glaciers, observationswere made during peak ablation (August–September) season in 2013 to understand the responseof debris covered and clean-ice (debris free) glacier surface to melting processes. Though, both the Bataland Sutri Dhaka glaciers have almost similar geographical disposition, Batal shows extensive debriscover (90% of the ablation area), while the latter is free from debris (only 5% of the ablation area). Thethickness of debris in Batal glacier is inversely proportional to altitude, whereas Sutri Dhaka mostlyexperienced debris-free zone except snout area. Observation revealed that the vertical gradient of ablationrate in ablation area is contrastingly opposite in these two glaciers, reflecting significant control ofdebris thickness and their distribution over glacier surface on the ablation rates. While different thickness(2–100 cm) of debris have attenuated melting rates up to 70% of total melting, debris cover of 2 cm thickness has accelerated melting up to 10% of the total melting. Estimated melt ratio revealsthat about 90% of the ablation area has experienced inhibited melting in Batal glacier, whereas only lessthan 5% ablation area of Sutri Dhaka has undergone inhibited melting. Comparison of topographicalmaps of 1962 with successive satellite images of the area demonstrates a terminus retreat of 373 ± 33.5 mand 579 ± 33.5 m for Batal and Sutri Dhaka glaciers for the period 1962–2013, respectively.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.