• Rahul Mohan

      Articles written in Journal of Earth System Science

    • Coccolithophores from the central Arabian Sea: Sediment trap results

      Lina P Mergulhao Rahul Mohan V S N Murty M V S Guptha D K Sinha

      More Details Abstract Fulltext PDF

      Sediment trap samples collected from a depth of 1018 m in the Central Arabian Sea Trap (CAST) at 14°28.2′N, 64°35.8′E were analyzed for temporal variation of coccolithophore fluxes from October 1993 to August 1994. Out of the twenty species of coccolithophores encountered,Gephyrocapsa oceanica, Emiliania huxleyi, Umbilicosphaera sibogae andUmbellosphaera irregularis were the most abundant. The total coccolithophore fluxes ranged from 28.5 × 106m-2d-1 to 50.3 × 106m-2d-1 showing seasonality with higher fluxes during the northeast (NE) monsoon and lower fluxes during the spring intermonsoon. The higher fluxes were attributed to the enhancement of primary production in the central Arabian Sea due to southward extent of nutrients from the northeast Arabian Sea by the prevailing surface currents. Similarly, the occurrences of relatively lower coccolithophore fluxes during the spring intermonsoon and southwest (SW) monsoon were attributed to the low nutrients in the warm, shallow surface mixed layer and downwelling to the south of Findlater Jet respectively in the central Arabian Sea. Some of the coccolithophore species such asE. huxleyi, G. oceanica, Calcidiscus leptoporus andUmbellosphaera tenuis showed signs of dissolution.

    • Provenance and temporal variability of ice rafted debris in the Indian sector of the Southern Ocean during the last 22,000 years

      M C Manoj Meloth Thamban A Sahana Rahul Mohan Kotha Mahender

      More Details Abstract Fulltext PDF

      Ice rafted debris (IRD) records were studied in two sediment cores (SK200/22a and SK200/27) from the sub-Antarctic and Polar frontal regime of the Indian sector of Southern Ocean for their distribution and provenance during the last 22,000 years. The IRD fraction consists of quartz and lithic grains, with the lithic grains dominated by volcaniclastic materials. IRD content was high at marine isotope stage 2 but decreased dramatically to near absence at the Termination 1 and the Holocene. The concentration of IRD at glacial section of the core SK200/27 was nearly twice that of SK200/22a. Moreover, IRD were more abundant at the last glacial maxima (LGM) in SK200/27 with its peak abundance proceeding by nearly two millennia than at SK200/22a. It appears that an intensification of Antarctic glaciation combined with a northward migration of the Polar Front during LGM promoted high IRD flux at SK200/27 and subsequent deglacial warming have influenced the IRD supply at SK200/22a. Quartz and lithic grains may have derived from two different sources, the former transported from the Antarctic mainland, while the latter from the islands of volcanic origin from Southern Ocean. Sea-ice, influenced by the Antarctic Circumpolar Current is suggested to be a dominant mechanism for the distribution of lithic IRD in the region.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.