• R Rengarajan

      Articles written in Journal of Earth System Science

    • Natural radionuclides in the Arabian Sea and Bay of Bengal: Distribution and evaluation of particle scavenging processes

      M M Sarin R Rengarajan B L K Somayajulu

      More Details Abstract Fulltext PDF

      Vertical and temporal variations in the activities of234Th,210Po and210Pb have been measured, in both dissolved and paniculate phases, at several stations in the eastern Arabian Sea and north-central Bay of Bengal. A comparative study allows us to make inferences about the particle associated scavenging processes in these two seas having distinct biogeochemical properties.

      A common feature of the234Th profiles, in the Arabian Sea and Bay of Bengal, is that the dissolved as well as total (dissolved + particulate) activity of234Th is deficient in the surface 200 m with respect to its parent,238U. This gross deficiency is attributed to the preferential removal of234Th by adsorption onto settling particles which account for its net loss from the surface waters. The scavenging rates of dissolved234Th are comparable in these two basins. The temporal variations in the234Th-238U disequilibrium are significantly pronounced both in the Arabian Sea and Bay of Bengal indicating that the scavenging rates are more influenced by the increased abundance of particles rather than their chemical make-up. In the mixed layer (0–50 m), the scavenging residence time of234Th ranges from 30 to 100 days.

      The surface and deep waters of both the seas show an enhanced deficiency of dissolved210Po relative to210Pb and that of210Pb relative to226Ra. The deficiencies of both210Po and210Pb in the dissolved phases are not balanced by their abundance in the particulate form indicating a net loss of both these nuclides from the water column. The scavenging rates of210Po and210Pb are significantly enhanced in the Bay of Bengal compared to those in the Arabian Sea. The mean dissolved210Po/210Pb and210Pb/226Ra activity ratios in deep waters of the Bay of Bengal are ∼ 0.7 and 0.1, respectively, representing some of the most pronounced disequilibria observed to date in the deep sea. The Bay of Bengal and the Arabian Sea appear to be the regions of most intense particle moderated scavenging processes in the world oceans. This is evidenced by the gross disequilibria exhibited by the three isotope pairs used in this study.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

    • Special Issue - "Call for papers"

      Posted on July 18, 2023
      AI/ML in Earth System Sciences

      Click here for more information

      Extreme weather events with special emphasis on lightning prediction, observation, and monitoring over India

      Click here for more information

© 2022-2023 Indian Academy of Sciences, Bengaluru.