R Chander
Articles written in Journal of Earth System Science
Volume 96 Issue 3 December 1987 pp 229-238
Irene Sarkar R Chander K N Khattri V K Gaur
The paper describes an algorithm for estimating the hypocentral coordinates and origin time of local earthquakes when the wave speed model to be employed is a layered one with dipping interfaces. A constrained least-squared error problem has been solved using the penalty function approach, in conjunction with the sequential unconstrained optimization technique of Fiacco and McCormick. Joint confidence intervals for the computed parameters are estimated using the approach of Bard for nonlinear problems. These results show that when a hypocentre lies outside the array of recording stations and head waves from a dipping interface are involved, then its inclination must be taken into account for dip angles exceeding 5°.
Volume 103 Issue 3 September 1994 pp 401-411
V K Gahalaut P K Gupta R Chander V K Gaur
We estimate the distribution of slip in the dip section of the causative fault for the 1905 Kangra earthquake by applying the minimum norm inversion technique to differences in pre- and post-earthquake levelling data collected along the Saharanpur-Dehradun-Mussoorie highway. For this purpose it is assumed that the causative fault of the 1905 Kangra earthquake was planar with a dip of 5° in the northeast direction and that it had a depth of 6 km at the southern limit of the Outer Himalaya in Dehradun region. The reliably estimated maximum slip on the fault is 7.5 m under the local northern limit of the Outer Himalaya. Using the inverted slip distribution we estimate that the maximum permanent horizontal and vertical displacements at the surface due to the Kangra earthquake were about 4 m and 1.5m respectively. The maximum transient displacements at the surface should have exceeded these permanent displacements. These estimates of maximum slip on the causative fault and the resultant maximum permanent and transient displacements at the surface during the Kangra earthquake may be taken tentatively as being representative of the great Himalayan earthquakes.
Volume 104 Issue 1 March 1995 pp 115-129
A simulation of upper crustal stresses for great and moderate thrust earthquakes of the Himalaya
We assume that great and moderate Himalayan earthquakes occur through reactivation of subhorizontal thrust faults by frictional failure under the action of stresses induced by Himalayan topography, isostasy related buoyancy forces, crustal overburden and plate tectonic causes. Estimates of stresses are based on two dimensional plane strain calculations using analytical formulae of elasticity theory and rock mechanics under suitable simplifying assumptions. Considerable attention is focussed on a point on the detachment at a depth of 17 km below mean sea level under the surface trace of the Main Central Thrust (MCT). According to recent views, great Himalayan earthquakes should nucleate in the detachment in the vicinity of such a point. Also many moderate earthquakes occur on the detachment similarly under the MCT. Vertical and horizontal normal stresses of 622 and 262 MPa and a corresponding shear stress of 26 MPa are estimated for this point due to topography, buoyancy and overburden. For fault friction coefficient varying between 0.3 to 1.0, estimates of plate tectonic stress required are in the range of 386 to 434 MPa, when the cumulative principal stresses are oriented favourably for reactivation of the detachment. Estimates of shear stress mobilized at the same point would be from 27 to 32 MPa for the identical range of fault friction coefficient. Our calculations suggest that presence of pore water in the fault zones is essential for reactivation. Pore pressure required is between 535 to 595 MPa for friction coefficient in the range of 0.3 to 1.0 and it is less than lithostatic stress of 603 MPa at the above point. For the specific nominal value of 0.65 for fault friction coefficient, the estimated values of plate tectonic stress, shear stress and pore pressure at the above point on the detachment are 410 MPa, 30 MPa and 580 MPa respectively. Similar estimates are obtained also for shallower points on the detachment up to the southern limit of the Outer Himalaya. Our estimates of the plate tectonic stress, shear stress and pore pressure for reactivation of upper crustal thrust faults compare favourably with those quoted in the literature.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.