• R Bhutani

      Articles written in Journal of Earth System Science

    • Aftershocks of 26th january 2001 Bhuj earthquake and seismotectonics of the Kutch region

      K S Misra R Bhutani R Sonp

      More Details Abstract Fulltext PDF

      The 26th January 2001 Bhuj earthquake was followed by intense aftershock activity. Aftershock data from United States Geological Survey (USGS) utilized in this study encompasses three months period from 26th January to 26th April 2001. Epicenters of the aftershock are plotted on a map depicting active faults. All the aftershocks of magnitude > 5 and 70% of those ranging between magnitude 3 and 5 are confined to an area resembling a horseshoe pattern with a pointed end towards NE. The other 20% of magnitude 3 to 5 are enclosed within an almost parallel boundary. Only 10% are found to be beyond this limiting boundary. 50% of the recorded after-shocks took place within the first week of the main event and this study reveals that the basic characteristic pattern of aftershock activity can be determined on the basis of the data of only one week.

      Four major NW-SE trending active faults are mapped in the Kutch region. They define the western limit of Cambay structure and also mark the western limit of Dharangadhra and Wadhwan basins along the SE continuation in Saurashtra. These faults separate the Kutch region into two geologically different blocks. On the SW side the mapped horseshoe pattern gets characteristically truncated along the western most fault, which is characterized by a strike-slip movement in the south and vertical movement in the north. The present study has revealed that the epicenter of the 26th January earthquake is located in the vicinity of the Bhachau township, close to the intersection with the Kutch mainland fault. Furthermore, it has been noticed that most of the epicenters of the aftershock are confined in the intersectional area of the Kutch mainland fault and the NW-SE faults.

    • Rb–Sr and Sm–Nd isotope systematics and geochemical studies on metavolcanic rocks from Peddavura greenstone belt: Evidence for presence of Mesoarchean continental crust in easternmost part of Dharwar Craton, India

      M Rajamanickam S Balakrishnan R Bhutani

      More Details Abstract Fulltext PDF

      Linear, north–south trending Peddavura greenstone belt occurs in easternmost part of the Dharwar Craton. It consists of pillowed basalts, basaltic andesites, andesites (BBA) and rhyolites interlayered with ferruginous chert that were formed under submarine condition. Rhyolites were divided into type-I and II based on their REE abundances and HREE fractionation. Rb–Sr and Sm–Nd isotope studies were carried out on the rock types to understand the evolution of the Dharwar Craton. Due to source heterogeneity Sm–Nd isotope system has not yielded any precise age. Rb–Sr whole-rock isochron age of 2551 ± 19 (MSWD = 1.16) Ma for BBA group could represent time of seafloor metamorphism after the formation of basaltic rocks. Magmas representing BBA group of samples do not show evidence for crustal contamination while magmas representing type-II rhyolites had undergone variable extents of assimilation of Mesoarchean continental crust (< 3.3 Ga) as evident from their initial 𝜀Nd isotope values. Trace element and Nd isotope characteristics of type I rhyolites are consistent with model of generation of their magmas by partial melting of mixed sources consisting of basalt and oceanic sediments with continental crustal components. Thus this study shows evidence for presence of Mesoarchean continental crust in Peddavura area in eastern part of Dharwar Craton.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.