• PRADEEP KUMAR THAPLIYAL

      Articles written in Journal of Earth System Science

    • Trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide over few major cities of India using satellite data

      POOJA JINDAL PRADEEP KUMAR THAPLIYAL MUNN VINAYAK SHUKLA SOM KUMAR SHARMA DEBASHIS MITRA

      More Details Abstract Fulltext PDF

      In this study, decadal trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide has been presented over few major cities of India using Aqua-AIRS products from 2003 to 2012. The atmospheric column is studied in few atmospheric layers, viz., surface-850, 850–500, 500–100, 100–50 and 50–1 hPa for temperature, water vapour and ozone. However, $\rm{CH_{4}}$ and $\rm{CO}$ results are presented in total column amounts. Non-parametric Mann–Kendall test has been applied to investigate the trends of annual means of parameters and Sen’s slope estimate has been used to find the rate of the change, if there is a trend. The layer average temperature (LAT) has been found to be increasing in lower troposphere (surface-850 hPa) and decreasing in lower stratosphere (100–50 hPa). The warming trend over Chennai is found to be not limited in lower tropospheric region, but extended in 850–500 hPa layer also. However, LAT(850–500 hPa) has decreasing trend over Thiruvananthapuram. LAT in 500–100 hPa has significant decreasing trend only over Ahmedabad. The decreasing LAT trend in 100–50 hPa is quite prominent with significant decreasing trends over Mumbai, Ahmedabad, Kolkata and Hyderabad. The layer integrated water vapour (LIWV) is found be increasing mainly in surface-850 hPa and 850–500 hPa layers. The decreasing trend of LIWV has been observed only over Ahmedabad in 500–100 hPa layer. For total column water vapour, the trends are mostly increasing, however, it is statistically significant only over Hyderabad. The layerintegrated ozone has been found to be increasing in troposphere and decreasing in lower stratosphere. The increasing trend of ozone in troposphere is most prominent in lower-mid tropospheric region (850–500 hPa layer). No significant trend has been observed for total column ozone. Total column methane has shown significant increasing trend over all cities with very good significance level. However, for total column carbonmonoxide, the trends are decreasing and the decreasing trends are significant over Delhi and Mumbai.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.