• P L S Rao

      Articles written in Journal of Earth System Science

    • The Indian summer monsoon as revealed by the NCMRWF system

      P L S Rao U C Mohanty P V S Raju Gopal Iyengar

      More Details Abstract Fulltext PDF

      In this study, we present the mean seasonal features of the Indian summer monsoon circulation in the National Centre for Medium Range Weather Forecasting (NCMRWF) global data assimilation and forecast system. The large-scale budgets of heat and moisture are examined in the analyzed and model atmosphere. The daily operational analyses and forecasts (day 1 through day 5) produced for the summer seasons comprising June, July and August of 1995 and 1993 have been considered for the purpose. The principal aim of the study is two-fold. Primarily, to comprehend the influence of the systematic errors over the Indian summer monsoon, secondarily, to analyze the performance of the model in capturing the interseasonal variability.

      The heat and moisture balances show reduction in the influx of heat and moisture in the model forecasts compared to the analyzed atmosphere over the monsoon domain. Consequently, the diabatic heating also indicates reducing trend with increase in the forecast period. In effect, the strength of Indian summer monsoon, which essentially depends on these parameters, weakens considerably in the model forecasts. Despite producing feeble monsoon circulation, the model captures interseasonal variability realistically. Although, 1995 and 1993 are fairly normal monsoon seasons, the former received more rainfall compared to the latter in certain pockets of the monsoon domain. This is clearly indicated by the analyzed and model atmosphere in terms of energetics.

    • The vorticity and angular momentum budgets of Asian summer monsoon

      P L S Rao U C Mohanty P V S Raju M A Arain

      More Details Abstract Fulltext PDF

      The study delineates the vorticity and angular momentum balances of Asian summer monsoon during the evolution and established phases. It also elucidates the differences between these balances in the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis and the National Centre for Medium Range Weather Forecasts (NCMRWF) analysis fields. The NCEP/NCAR reanalysis for a 40 year period (1958-97) and the NCMRWF analysis for a three year (1994-96) period are made use of for the purpose. The time mean summer monsoon circulation is bifurcated into stable mean and transient eddy components and the mean component is elucidated.

      The generation of vorticity due to stretching of isobars balances most of the vorticity transported out of the monsoon domain during the evolution period. However, during the established period, the transportation by the relative and planetary vorticity components exceeds the generation due to stretching. The effective balancing mechanism is provided by vorticity generation due to sub-grid scale processes. The flux convergence of omega and relative momenta over the monsoon domain is effectively balanced by pressure torque during the evolution and established phases. Nevertheless, the balance is stronger during the established period due to the increase in the strength of circulation.

      Both the NCMRWF and NCEP fields indicate the mean features related to vorticity and angular momentum budgets realistically. Apart from the oceanic bias (strong circulation over oceans rather than continents), the summer monsoon circulation indicated by the NCEP is feeble compared to NCMRWF. The significant terms in the large-scale budgets of vorticity and angular momentum enunciate this aspect

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.