• P Kishore

      Articles written in Journal of Earth System Science

    • Layered clouds in the Indian monsoon region

      M K Rama Varma Raja G C Asnani P S Salvekar A R Jain D Narayana Rao S Venkoba Rao P Kishore M Hareesh

      More Details Abstract Fulltext PDF

      Contrary to the prevalent belief that tropical region is characterized by convective clouds rather than by layer clouds, we have suggested that deep convective clouds occur on meso-scale, but layer clouds occur on larger synoptic-scale with a relatively small region of deep convective clouds. Sustenance of deep convective clouds is inhibited by the presence of inertio-gravity waves, which have alternating layers of upward and downward motion in the vertical. We have also shown that inertio-gravity waves generate regions of relatively strong horizontal velocity, vertically separated by layers of relatively weak horizontal velocity. Layers of strong horizontal velocity are created by inertio-gravity wave system through convergence of vertical flux of horizontal momentum. We have also suggested that horizontal convergence/divergence of moisture flux is generated by inertio-gravity waves, giving rise to vertically alternating layers of high/low humidity, and visible or sub-visible clouds. Layers of high humidity become layers of strong radar reflectivity at frequency of 53 MHz at which MST Radar at Gadanki, near Tirupati, India, operates. These observations, more than 2,50,000 in number, for vertical grid points, spread over all the months of the year, have helped us, among other observations, to arrive at these conclusions. Further, the analysis suggests that the main source of strong MST radar reflectivity is not mechanical turbulence as is commonly believed.

    • Global distribution of pauses observed with satellite measurements

      M Venkat Ratnam P Kishore Isabella Velicogna

      More Details Abstract Fulltext PDF

      Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.