• P K Jana

      Articles written in Journal of Earth System Science

    • Ozone decline and its effect on night airglow intensity of Na 5893 Å at Dumdum (22.5°N, 88.5°E) and Halley Bay (76°S, 27°W)

      P K Jana S C Nandi

      More Details Abstract Fulltext PDF

      The paper presents the effect of O3 depletion on night airglow emission of Na 5893 Å line at Dumdum (22.5°N, 88.5°E), India and Halley Bay (76°S, 27°W), a British Antarctic service station. Calculations based on chemical kinetics show that the airglow intensity of Na 5893 Å line will also be affected due to the depletion of O3 concentration. The nature of yearly variation and seasonal variation of the intensity of Na 5893 Å line for the above two stations are shown and compared. It is shown that the rate of decrease of intensity of Na 5893 Å line is comparatively more at Halley Bay due to the dramatic decrease of Antarctic O3 concentration. A possible explanation for this dramatic decrease of Antarctic O3 concentration is also mentioned.

    • Long-term ozone decline and its effect on night airglow intensity of Li 6708 ˚A at Varanasi (25°N, 83°E) and Halley Bay (76°S, 27°W)

      P K Jana I Saha S Mukhopadhyay

      More Details Abstract Fulltext PDF

      A critical analysis has been made on the long-term yearly and seasonal variations of ozone concentration at Varanasi (25°N, 83°E), India and Halley Bay (76°S, 27°W), a British Antarctic Service Station. The effect of O3 depletion on night airglow emission of Li 6708 ˚A line at Varanasi and Halley Bay has been studied. Calculations based on chemical kinetics show that the airglow intensity of Li 6708 ˚A line has also been affected due to the depletion of O3 concentration. The yearly variations and seasonal variations of intensities of Li 6708 ˚A line for the above two stations are shown and compared. It has been shown that the rate of decrease of intensity of Li 6708 ˚A line was comparatively more at Halley Bay due to dramatic decrease of Antarctic O3 concentration.

    • Effect of cloud occurrences on tropospheric ozone over Alipore (22.52°N, 88.33°E), India

      P K Jana D Sarkar D K Saha S K Midya

      More Details Abstract Fulltext PDF

      The paper presents the nature of annual cycles of tropospheric ozone, cloud occurrences, NO2, rainfall, SO2, SPM, CO, non-methane hydrocarbon and surface solar radiation for the period October 2004 to June 2009 over Alipore (22.52°N, 88.33°E), India. Annual cycle of low-level cloud occurrences depicts that the low-level cloud over Alipore had been noticed to occur for many days and nights, particularly from June to September. The low-level cloud occurrences were found in winter months and post-monsoon period. The effect of cloud occurrences on tropospheric ozone concentration has been critically analysed and explained. It has been observed that the concentration of ozone is oscillatory with cloud occurrences and has a slight linear decreasing trend with the increase of cloud occurrences and vice versa. The concentration of tropospheric ozone attained higher value at moderate cloud occurrences and comparatively lower value at both of the lower and higher cloud occurrences. The related possible chemical and physical explanation for role of cloud occurrences on tropospheric ozone has been offered.

    • Yearly variation and annual cycle of total column ozone over New Delhi (29°N, 77°E), India and Halley Bay (76°S, 27°W), British Antarctic Survey Station and its effect on night airglow intensity of OH(8, 3) for the period 1979–2005

      P K Jana D K Saha D Sarkar

      More Details Abstract Fulltext PDF

      A critical analysis made on the long-term monthly, seasonal, yearly variation and annual cycle of total column ozone (TCO) concentration at New Delhi (29°N,77°E), India and Halley Bay (76°S, 27°W), a British Antarctic Service Station reveals more decline in yearly mean ozone concentration at Halley Bay than at New Delhi from 1979 to 2005. The nature of variations of monthly mean TCO during the months of August and September was the most identical with that of yearly mean ozone values at New Delhi and Halley Bay, respectively, for the same period. Annual cycles of TCO over these stations are completely different for the above period. The effect of O3 depletion on night airglow emission of OH(8, 3) line at New Delhi and Halley Bay has been studied. Calculations based on chemical kinetics show that the airglow intensity of OH(8, 3) has also been affected due to the depletion of O3 concentration. The yearly variations and annual cycle of intensities of OH(8, 3) line for the above two stations are depicted and compared. It has been shown that the rate of decrease of intensity of OH(8, 3) line was comparatively more at Halley Bay due to dramatic decrease of Antarctic O3 concentration.

    • Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column zone growth at Srinagar (34°N, 74.8°), India

      P K Jana D K Saha D Sarkar

      More Details Abstract Fulltext PDF

      A critical analysis has been made on the contribution of CFC-11, CFC-12, CFC-113, CH2Cl, CH3Br, CCl4, CH3CCl3, HCFCs, halons, WMO (World Meteorological Organization) minor constituents, CH4, N2O and water vapour to the variation of total column ozone (TCO) concentration at the station in Srinagar (34°N, 74.8°E), India from 1992 to 2003. With the implementation of Montreal Protocol, though the concentrations of CFC-11, CFC-113, CH3Cl, CH3Br, CCl4 and CH3CCl3 had decreased, the concentrations of CFC-12, HCFCs, halons, WMO minor constituents, CH4, N2O and water vapour had increased, as a result of which TCO had risen from 1992 to 2003 at the above station. The nature of yearly variations of concentrations of the above ozone depleting substances and greenhouse gases as well as ozone has been presented. Possible explanations for build-up of TCO have also been offered.

    • Effect of some climatic parameters on tropospheric and total ozone column over Alipore (22.52°N, 88.33°E), India

      P K Jana S Bhattacharyya A Banerjee

      More Details Abstract Fulltext PDF

      The paper presents the nature of variations of tropospheric and total ozone column retrieved from the Convective Cloud Differential (CCD) technique, Ozone Monitoring Instrument (OMI), and Total Ozone Mapping Spectrometer (TOMS) data, National Aeronautics and Space Administrations (NASA), USA, respectively; surface temperature, relative humidity, total rainfall, ozone precursors (non-methane hydrocarbon, carbon monoxide, nitrogen dioxide, and sulphur dioxide) that are collected from India Meteorological Department (IMD), Alipore, Kolkata; solar insolation obtained from Solar Geophysical Data Book and El-ñ index collected from National Climatic Data Center, US Department of Commerce, National Oceanic and Atmospheric Administration, USA. The effect of these climatic parameters and ozone precursors on ozone variations is critically analyzed and explained on the basis of linear regression and correlation. It has been observed that the maximum, minimum and mean temperature, relative humidity, solar insolation, tropospheric, and total ozone column (TOC) showed slight increasing tendencies from October 2004 to December 2011, while total rainfall and El-ñ index showed little decreasing tendencies for the same period. Amongst selected climatic parameters and ozone precursors, the solar insolation and the average temperature had a significant influence on both, the tropospheric ozone and total ozone column formation. The solar insolation had contributed more in tropospheric ozone than in total ozone column; while El-ñ index had played a more significant role in total ozone column build up than in tropospheric ozone. Negative correlation was observed between almost all ozone precursors with the tropospheric and total ozone. The tropospheric ozone and total ozone column were also significantly correlated. The level of significance and contribution of different climatic parameters are determined from correlation technique and Multiple Linear Regression (MLR) method. The related chemical kinetics for ozone production processes has been critically described.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.