• P A Francis

      Articles written in Journal of Earth System Science

    • Towards understanding the unusual Indian monsoon in 2009

      P A Francis Sulochana Gadgil

      More Details Abstract Fulltext PDF

      The Indian summer monsoon season of 2009 commenced with a massive deficit in all-India rainfallof 48% of the average rainfall in June. The all-India rainfall in July was close to the normal but that in August was deficit by 27%. In this paper, we first focus on June 2009, elucidating the special features and attempting to identify the factors that could have led to the large deficit in rainfall. In June 2009, the phase of the two important modes, viz., El Ni˜no and Southern Oscillation (ENSO) and the equatorial Indian Ocean Oscillation (EQUINOO) was unfavourable. Also, the eastern equatorial Indian Ocean (EEIO) was warmer than in other years and much warmer than the Bay. In almost all the years, the opposite is true, i.e., the Bay is warmer than EEIO in June. It appears that this SST gradient gave an edge to the tropical convergence zone over the eastern equatorial Indian Ocean, in competition with the organized convection over the Bay. Thus, convection was not sustained for more than three or four days over the Bay and no northward propagations occurred. We suggest that the reversal of the sea surface temperature (SST) gradient between the Bay of Bengal and EEIO, played a critical role in the rainfall deficit over the Bay and hence the Indian region. We also suggest that suppression of convection over EEIO in association with the El Ni˜no led to a positive phase of EQUINOO in July and hence revival of the monsoon despite the El Ni˜no. It appears that the transition to a negative phase of EQUINOO in August and the associated large deficit in monsoon rainfall can also be attributed to the El Ni˜no.

    • A note on new indices for the equatorial Indian Ocean oscillation

      P A Francis Sulochana Gadgil

      More Details Abstract Fulltext PDF

      It is now well known that there is a strong association of the extremes of the Indian summer monsoon rainfall (ISMR) with the El Ni˜no and southern oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO), later being an east–west oscillation in convection anomaly over the equatorial Indian Ocean. So far, the index used for EQUINOO is EQWIN, which is based on the surface zonal wind over the central equatorial Indian Ocean. Since the most important attribute of EQUINOO is the oscillation in convection/precipitation, we believe that the indices based on convection or precipitation would be more appropriate. Continuous and reliable data on outgoing longwave radiation (OLR), and satellite derived precipitation are now available from 1979 onwards. Hence, in this paper, we introduce new indices for EQUINOO, based on the difference in the anomaly of OLR/precipitation between eastern and western parts of the equatorial Indian Ocean. We show that the strong association of extremes of the Indian summer monsoon with ENSO and EQUINOO is also seen when the new indices are used to represent EQUINOO.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.