• O Vaselli

      Articles written in Journal of Earth System Science

    • Petrology of the prehistoric lavas and dyke of the Barren Island, Andaman Sea, Indian Ocean

      M A Alam D Chandrasekharam O Vaselli B Capaccioni P Manetti P B Santo

      More Details Abstract Fulltext PDF

      Although Barren Island (Andaman Sea, Indian Ocean) witnessed several volcanic eruptions during historic times, the eruptions that led to the formation of this volcanic island occurred mainly during prehistoric times. It is still active and currently in the fumarolic stage. Its volcanic evolution appears to be characterized by a constructive phase with the piling up of lava flows and scoria deposits and Strombolian activities, followed by a sudden collapse of the main cone. Deposits of a possible caldera-forming eruption were not recognized earlier. After a period of peri-calderic hydromagmatic activity, whose deposits presently mantle inner and outer caldera walls, a new phase of intracalderic Vulcanian activities took place. A prominent dyke in the SE inner side of the caldera wall was recognized. Petrographically the lava flows and dyke are similar but they differ in their chemical composition (viz., SiO2, MgO, Ni, Cr) significantly. Similarity in major, minor and trace element composition (viz., K/La, K/Nb, K/Rb, K/Ti ratios) of these rocks together with Chondrite normalized trace element (Rb, Ba, Sr, P, Zr, Ti and Nb) and REE (La, Ce, Nd and Y) patterns of the Barren Island prehistoric lava flows and dyke and low-K lavas of Sunda Arc indicates that Barren Island must have evolved from a source similar to that of Sunda Arc lavas during the Quaternary Period.

    • Physico-chemical characteristics of Jharkhand and West Bengal thermal springs along SONATA mega lineament, India

      Hemant K Singh D Chandrasekharam O Vaselli G Trupti B Singh Aref Lashin Nassir Al Arifi

      More Details Abstract Fulltext PDF

      The chemical and isotopic compositions of thermal springs located along the Son–Narmada–Tapti (SONATA) mega lineament in central India have been investigated. The issuing temperatures of the thermal waters vary from 31° to 89°C for the thermal springs and 24° to 25°C for the cold springs. These thermal springs are located on the Archean Chotanagpur Gneissic Complex (CGC) in the eastern part of peninsular India. The thermal springs are mostly alkaline in nature with pH varying from 7.5 to 9.5. Piper diagram suggests that the chemistry of the thermal waters is compatible with the granitic host rocks through which the waters circulate. Mineral saturation index suggests that the thermal waters are saturated with cristobalite and quartz at lower temperatures (less than $\sim$130 to 150°C), and calcite and forsterite at higher temperatures ($\sim$160° to 250°C). The estimated reservoir temperature based on chemical geothermometers is in the range of 132°–265°C, which favours a medium enthalpy geothermal system. Oxygen isotope fractionation of Bakreswar and Tantloi thermal springs highlights a higher reservoir temperature than estimated by chemical geothermometer. Positive gravity anomalies over Bakreswar and Tantloi areas strongly suggest a basement/mantle upliftment or mafic intrusion which could account for the heat source close to the surface. However, the large negative gravity anomaly depression around the Surajkund and Katkamsandi thermal springs indicates presence of deep seated faults.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.