• Nilanjan Dasgupta

      Articles written in Journal of Earth System Science

    • Characteristics of pegmatoidal granite exposed near Bayalan, Ajmer district, Rajasthan

      Nilanjan Dasgupta Taritwan Pal Joydeep Sen Tamoghno Ghosh

      More Details Abstract Fulltext PDF

      The study involves the characterization of pegmatoidal granite, southeast of Beawar, Ajmer district, Rajasthan. Earlier researchers had described this granite as part of the BGC, basement to the Bhim Group of the Delhi Super Group rocks. However, the present study indicates that it is younger than the rocks of Bhim Group of South Delhi Fold Belt, into which it is intrusive. The intrusion is structurally controlled and the outcrop pattern is phacolithic. The granite had intruded post-D2 deformation of the Delhi orogeny along the axial planes of D2 folds. The intrusion has also resulted in the formation of a contact aureole about the calc gneisses.

    • Tectonic imprints within a granite exposed near Srinagar, Rajasthan, India

      Trishit Ruj Nilanjan Dasgupta

      More Details Abstract Fulltext PDF

      Partial melting in the middle to lower crustal level produces melts of granitic composition during orogeny. Thrusts play a vital role in their exhumation after consolidation of these granitic melts. In this paper we focus on one such granite along the eastern margin of the Delhi Fold Belt (DFB) rocks near Srinagar, Rajasthan, India. This is the first report of granite within the area and holds a key stratigraphic position in the entire rock package. The said granite is found to be intrusive to the DFB metasediments as well as their basement popularly known as the Banded Gneissic Complex (BGC). We disentangle the deformation fabrics seen within the granite and associated DFB metasediments, suggesting that subsequent to emplacement and consolidation, the granite has co-folded along with the country rocks. Three deformational events could be identified within the DFB metasediments namely, D1D, D2D and D3D. The peak metamorphism was achieved in the D1D event. The granite magma is generated and emplaced late syn-kinematic to D1D and thereafter is deformed by D2D and D3D producing D1G and D2G structural fabrics. These compressive deformations resulted in the collapse of the basin; the combined package of DFB rocks and the granite was thrusted eastwards over the basement rocks. The tectonic transport direction during thrusting is suggested eastwards from our structural analysis. Transverse faults developed perpendicular to the length of the granite have led to partitioning of the strain thereby showing a heterogeneity in the development of fabric within it.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.