• Neeraj Vishwakarma

      Articles written in Journal of Earth System Science

    • Interaction of coeval felsic and mafic magmas from the Kanker granite, Pithora region, Bastar Craton, Central India

      R Elangovan Kumar Krishna Neeraj Vishwakarma K R Hari M Ram Mohan

      More Details Abstract Fulltext PDF

      Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.

    • Mineral chemistry of high-Al chromian spinel from ultramafic rocks of the Babina–Prithvipur transect, Bundelkhand Craton, central India: Implication for petrogenesis and tectonic setting

      ABINASH SAHU NEERAJ VISHWAKARMA YAMUNA SINGH VERMA C B

      More Details Abstract Fulltext PDF

      Bundelkhand Craton is an important Archaean cratonic nuclei of the Central Indian Shield and comprises two greenstone complexes, i.e., the Babina–Mauranipur Greenstone Belt and the Girar–Madawara Greenstone Belt. The E–W trending Babina–Mauranipur Greenstone Belt in the central part of the craton, encloses several isolated lensoid shaped ultramafic bodies which has suffered various degrees of alteration and metamorphism. As per modal mineral analysis, the ultramafic rocks of the Babina–Prithvipur section belong to harzburgite and also contain high-Al chromian spinel along with olivine, ortho-pyroxene and amphibole. Mineral chemistry reveals that the spinels are of high Al and Cr poor variety, where Al$_{2}$O$_{3}$ and Cr$_{2}$O$_{3}$ contents range from 40.06 to 54.34 wt.% and 9.05 to 14.89 wt.%, respectively. The TiO$_{2}$ content is extremely low (average $\approx$0.07 wt.%). The Cr# value of the spinel is < 0.2, whereas Mg# ranges from 0.495 to 0.633. The forsterite contents of the olivine ranges from 86.088 to 88.105 wt.%. Average CaO and NiO contents of the olivine stand 0.03 and 0.24 wt.%, respectively. Composition of the analyzed ortho-pyroxene belongs to En$_{84.20–87.75}$Wo$_{0.15–0.39}$ with low CaO content of 0.080 to 0.207 wt.%. As per mineral chemistry, these harzburgite rocks of the Babina–Prithvipur section belong to mantle peridotite. Melt calculation for the spinel also suggests a least differentiated magmatic product, which is also supported by the olivine spinel mantle array diagram as all the samples are plotted within the mantle array field very close to the fertile mantle source. Low TiO$_{2}$ and high Al contents of spinel also reflect the MORB type peridotite characteristics for these ultramafic rocks which probably originated from least differentiated plagioclase free mantle derived harzburgite/lherzolitic magma in a rift related spreading centre. As a whole these ultramafic rocks appear to be the remnant of the early crust that existed during the Archaean time.

    • Landslide susceptibility mapping using bivariate statistical method for the hilly township of Mussoorie and its surrounding areas, Uttarakhand Himalaya

      PRATAP RAM VIKRAM GUPTA MEENAKSHI DEVI NEERAJ VISHWAKARMA

      More Details Abstract Fulltext PDF

      Landslide is a normal geomorphic process that becomes hazardous when interfering with any development activity. It has been noted that ${\sim}$400 causalities occur in the Himalayan region every year due to this phenomenon. The frequency and magnitude of the landslides increase every year, particularly in the hilly townships. This demands the large scale landslide susceptibility, hazard, risk, and vulnerability assessment of the region to be carried out. In the present study, Mussoorie Township and its surrounding areas located in the Lesser Himalaya has been chosen for Landslide Susceptibility Mapping (LSM) that involved bivariate statistical Yule coefficient (YC) method. It calculates the binary association between landslides and its various possible causative factors like lithology, land use-landcover (LULC), slope, aspect, curvature, elevation, road-cut, drainage, and lineament. The results indicate that ${\sim}$44% of the study area falls under very high, high and moderate landslide susceptible zones and ${\sim}$56% in the low and very low landslide susceptible zones. The dominant part of the area falling under high and moderate landslide susceptible zones lies in the area covered by highly fractured Krol limestone exhibiting slope ranging between 65$^{\circ}$ and 77$^{\circ}$. The study would be useful to the planners for the land-use planning of the area.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.