• Narendra Hengade

      Articles written in Journal of Earth System Science

    • Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model

      Narendra Hengade T I Eldho

      More Details Abstract Fulltext PDF

      The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971−2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971−2010).

    • Relative impact of recent climate and land cover changes in the Godavari river basin, India

      Narendra Hengade Eldho T I

      More Details Abstract Fulltext PDF

      The Godavari river basin (GRB), the second largest river basin (312,800 km$^{2}$) in India, was considered in this study to quantify the relative hydrological impact of recent land cover (LC) changes and rainfall trends using the variable infiltration capacity hydrologic model. Three scenarios, namely, (i) LC change, (ii) climate change and (iii) LC and climate changes, were considered to isolate the hydrological implications of the LC changes from those of climate change. Results revealed that evapotranspiration is predominantly governed by LC change and that small changes in rainfall cause greater changes in the runoff. Although the spatial extent of LC change is higher, the climate change is the dominant driver of hydrological changes within the GRB. Thus, climate projections are the key inputs to study the impact on the river basin hydrology. The results provide insights into the impacts of the climate and LC changes on the basin. The methodology and results of the present study can be further considered for water resource planning within the river basin in view of the changing environment.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.