• Matthew Simpson

      Articles written in Journal of Earth System Science

    • Development and propagation of a pollution gradient in the marine boundary layer during INDOEX (1999)

      Matthew Simpson Sethu Raman

      More Details Abstract Fulltext PDF

      The development and propagation of a pollution gradient in the marine boundary layer over the Arabian Sea during the Intensive Field Phase of the Indian Ocean Experiment (1999) is investigated. A hypothesis for the generation of the pollution gradient is presented. Infrared satellite images show the formation of the pollution gradient as the leading edge of a polluted air mass in the marine boundary layer and also its propagation over the Arabian Sea and the northern Indian Ocean. Aerosol data measured from two research vessels over the Arabian Sea show a variation in the concentrations caused by the passage of this pollution gradient. Depth of the pollution gradient was found to be about 800 m. A numerical model was used to simulate the development of this gradient and its propagation over the ocean. Results show that its formation and structure are significantly influenced by the diurnal cycle of coastal sea-land breeze circulations along India’s west coast. Transport of aerosols and gases over the Arabian Sea in the lower troposphere from land sources appears to be through this mechanism with the other being the elevated land plume.

    • Urban effects of Chennai on sea breeze induced convection and precipitation

      Matthew Simpson Sethu Raman R Suresh U C Mohanty

      More Details Abstract Fulltext PDF

      Doppler radar derived wind speed and direction profiles showed a well developed sea breeze circulation over the Chennai, India region on 28 June, 2003. Rainfall totals in excess of 100 mm resulted from convection along the sea breeze front. Inland propagation of the sea breeze front was observed in radar reflectivity imagery. High-resolution MM5 simulations were used to investigate the influence of Chennai urban land use on sea breeze initiated convection and precipitation. A comparison of observed and simulated 10 m wind speed and direction over Chennai showed that the model was able to simulate the timing and strength of the sea breeze. Urban effects are shown to increase the near surface air temperature over Chennai by 3.0 K during the early morning hours. The larger surface temperature gradient along the coast due to urban effects increased onshore flow by 4.0m s−1. Model sensitivity study revealed that precipitation totals were enhanced by 25 mm over a large region 150 km west of Chennai due to urban effects. Deficiency in model physics related to night-time forecasts are addressed.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.