Articles written in Journal of Earth System Science

    • Geomorphic and lithologic characteristics of Wadi Feiran basin, southern Sinai, Egypt, using remote sensing and field investigations

      Ayman A Ahmed Mohamed Abdelkareem Asran M Asran Tawfig M Mahran

      More Details Abstract Fulltext PDF

      Wadi Feiran is an important drainage basin in southern Sinai Peninsula covering an area of about 1785 km2, its streams drain into the Gulf of Suez crossing variety of rocks and sedimentary units varied in age from Precambrian to Quaternary. Field investigations, geographic information systems (GIS) and remote sensing studies including Landsat-7 ETM+, Radarsat-1, and SRTM DEM were integrated to reveal its lithologic, geologic and geomorphic features. Besides the field investigations, rock units including basement and pre- and syn-rift sedimentary units were discriminated using band ratios and principal component analysis techniques (PCA). Such techniques revealed that the crystalline rocks covering W. Feiran are unaltered rocks lacking OH-bearing minerals. Radar data successfully displayed the structures and geomorphic features related to topography. Moreover, the techniques allowed the extraction of the dyke-like structures along faults and shear zones. This also characterized the topographic variations through analysis of the shaded terrain and the altitudinal profiles. The results of data integration, lineament analysis and lineament density maps revealed that the structural grain in the present study has four different trends: N20–45E, N30–45W, N–S and E–W. Based on analysis of radar data and geomorphic indices, W. Feiran is an asymmetrical basin, its left side occupies ∼34% of the total area that leads to a supposedly massive tilt towards the south which caused the southwestward slope.

    • Assessing the emissions of $\rm{CO}$, $\rm{SO}_{2}$, and $\rm{NO_{X}}$ and predicting potential zones of $\rm{CO}$ concentration from sugarcane factories in Egypt


      More Details Abstract Fulltext PDF

      Air pollution causes significant environmental and health problems around the world. The present study assesses the emission of $\rm{CO}$, $\rm{SO}_{2}$, and $\rm{NO_{X}}$ from six sugarcane factories (SCFs) in Egypt, which are using two dominant fuels, bagasse and natural gas. The detected CO emission and concentrations levels from the stacks of SCFs that used bagasse were higher ($\rm{1751–3030 mg/Nm^{3}}$) than those using a mixture of bagasse and natural gas ($\rm{555 mg/Nm^{3}}$), as well as natural gas only ($\rm{169.2–246.5 mg/Nm^{3}}$). The emission of CO is higher than permissible levels, but $\rm{SO_{2} (2.5–26.5 mg/Nm^{3}})$ and $\rm{NO_{X} (25.5–149.75 mg/Nm^{3}})$ emissions in all kinds of fuels are within the permissible levels. Dispersion of CO in the ambient from stack emission from Kom Ombo SCF is simulated using the Ministry of Economic, Trade, and Industry Low-Rise Industrial Source dispersion (METI-LIS) model. The results predicted the higher risk zone (>10 ppmv) extends $\sim$1 km around the KSCF and occupies the near middle part of the plume, but the lower zone (<0.1 ppmv) occupies the outer zone and extends for several kilometers. Measurements in the ambient air validated the predicted model, which revealed that people living in areas about 1 km south and west downwind of the KSCF are exposed to higher levels of CO concentration. Usage of bagasse in SCFs needs to be replaced by natural gas for the reduction in emission of pollutants. Moreover, pollutants emitted from the SCFs should be monitored periodically to control the emission for healthy environment.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.