• M S Srinivasan

      Articles written in Journal of Earth System Science

    • Pleistocene oceanographie changes indicated by deep sea benthic foraminifera in the northern Indian Ocean

      Ajai K Rai M S Srinivasan

      More Details Abstract Fulltext PDF

      An attempt has been made to understand the Pleistocene bottom water history in response to the paleoclimatic changes in the northern Indian Ocean employing quantitative analyses of deep sea benthic foraminifera at the DSDP sites 219 and 238. Among the 150 benthic foraminifera recorded a few species show dominance with changing percent frequencies during most of the sequence. The dominant benthic foraminiferal assemblages suggest that most of the Pleistocene bottom waters at site 219 and Early Pleistocene bottom waters at site 238 are of North Indian Deep Water (NIDW) origin. However, Late Pleistocene assemblage at site 238 appears to be closely associated with a water mass intermediate between North Indian Deep Water (NIDW) and Antarctic Bottom Water (AABW).

      Uvigerina proboscidea is the most dominant benthic foraminiferal species present during the Pleistocene at both the sites. A marked increase in the relative abundance ofU. proboscidea along with less diverse and equitable fauna during Early Pleistocene suggests a relative cooling, an intensified oceanic circulation and upwelling of nutrient rich bottom waters resulting in high surface productivity. At the same time, low sediment accumulation rate during Early Pleistocene reveals increased winnowing of the sediments possibly due to more corrosive and cold bottom waters. The Late Pleistocene in general, is marked by relatively warm and stable bottom waters as reflected by low abundance ofU. proboscidea and more diverse and equitable benthic fauna.

      The lower depth range for the occurrence ofBulimina aculeate in the Indian Ocean is around 2300 m, similar to that of many other areas.B. aculeata also shows marked increase in its abundance near the Pliocene/Pleistocene boundary while a sudden decrease in the relative abundance ofStilostomella lepidula occurs close to the Early/Late Pleistocene boundary.

    • Ocean circulation in the tropical Indo-Pacific during early Pliocene (5.6 - 4.2 Ma): Paleobiogeographic and isotopic evidence

      M S Srinivasan D K Sinha

      More Details Abstract Fulltext PDF

      A Comparison of late Neogene planktic foraminferal biogeography and stable isotopic records of shallow dwelling and deep dwelling planktic foraminifera from DSDP sites 214 (Ninetyeast Ridge, northeast Indian Ocean) and 586B (ontong-Java Plateau, western Equatorial Pacific) provides a clue to the nature of the ocean circulation in the tropical Indo-Pacific during early Pliocene.

      The Present study reveals that the late Neogene planktic foraminiferal data from the eastern and western sides of the Indonesian Seaway are very similar. The only distinct inter-ocean difference however is the absence of Pulleniatina spectablis from the Indian Ocean. This species makes its first evolutionary appearance in the Equatorial Pacific at about 5.6 Ma (Early Gilbert reversed) and ranges up to 4.2 Ma (Top Conhiti subchron). The complete absence of Pulleniatina spectablis from the Indian Ocean is attributed to blocking of westward flow of tropical waters of the Pacific to the Indian Ocean resulting in a major change in the tropical Pacific and Indian oceans during 5.6 to 4.2 ma.

      In order to understand the nature of this blockage, isotopic depth ranking of selected planktic foraminifera and thus may be interpreted that the shallow sills that mark the Seaway in modern times were present as early as 5.6 Ma.

      The distribution of Pulleniatina spectablis throughout the Equatorial Pacific reveals that Modern Equatorial Pacific Under Current (Cromwell Current) flowing towards east at a depth of 200-300 m (which is also the depth habitat of Pulleniatina spectablis) was present at the beginning of the Pliocene (5.6 Ma).

      As a dequel to the blocking of the Indonesian Seaway and the resultant interruption in the flow of central Equatorial Current System of the Pacific to the west there was an increase in the western Pacific Warm Pool Waters and strengthening of the gyral circulation in the Pacific and Indian Oceans. This eventually triggered the intensification of the Asian Monsoon System.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.