• M Mandal

      Articles written in Journal of Earth System Science

    • Impact of horizontal resolution on prediction of tropical cyclones over Bay of Bengal using a regional weather prediction model

      M Mandal U C Mohanty K V J Potty A Sarkar

      More Details Abstract Fulltext PDF

      The present study is carried out to examine the performance of a regional atmospheric model in forecasting tropical cyclones over the Bay of Bengal and its sensitivity to horizontal resolution. Two cyclones, which formed over the Bay of Bengal during the years 1995 and 1997, are simulated using a regional weather prediction model with two horizontal resolutions of 165 km and 55 km. The model is found to perform reasonably well towards simulation of the storms. The structure, intensity and track of the cyclones are found to be better simulated by finer resolution of the model as compared to the coarse resolution. Rainfall amount and its distribution are also found to be sensitive to the model horizontal resolution. Other important fields, viz., vertical velocity, horizontal divergence and horizontal moisture flux are also found to be sensitive to model horizontal resolution and are better simulated by the model with finer horizontal grids.

    • Analysis of stability parameters in relation to precipitation associated with pre-monsoon thunderstorms over Kolkata, India

      H P Nayak M Mandal

      More Details Abstract Fulltext PDF

      The upper air RS/RW (Radio Sonde/Radio Wind) observations at Kolkata (22.65N, 88.45E) during premonsoon season March–May, 2005–2012 is used to compute some important dynamic/thermodynamic parameters and are analysed in relation to the precipitation associated with the thunderstorms over Kolkata, India. For this purpose, the pre-monsoon thunderstorms are classified as light precipitation (LP), moderate precipitation (MP) and heavy precipitation (HP) thunderstorms based on the magnitude of associated precipitation. Richardson number in non-uniformly saturated ($R_i$*) and saturated atmosphere ($R_i$); vertical shear of horizontal wind in 0–3, 0–6 and 3–7 km atmospheric layers; energy-helicity index (EHI) and vorticity generation parameter (VGP) are considered for the analysis. The instability measured in terms of Richardson number in non-uniformly saturated atmosphere ($R_i$∗) well indicate the occurrence of thunderstorms about 2 hours in advance. Moderate vertical wind shear in lower troposphere (0–3 km) and weak shear in middle troposphere (3–7 km) leads to heavy precipitation thunderstorms. The wind shear in 3–7 km atmospheric layers, EHI and VGP are good predictors of precipitation associated with thunderstorm. Lower tropospheric wind shear and Richardson number is a poor discriminator of the three classified thunderstorms.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.