M Mandal
Articles written in Journal of Earth System Science
Volume 112 Issue 1 March 2003 pp 79-93
M Mandal U C Mohanty K V J Potty A Sarkar
The present study is carried out to examine the performance of a regional atmospheric model in forecasting tropical cyclones over the Bay of Bengal and its sensitivity to horizontal resolution. Two cyclones, which formed over the Bay of Bengal during the years 1995 and 1997, are simulated using a regional weather prediction model with two horizontal resolutions of 165 km and 55 km. The model is found to perform reasonably well towards simulation of the storms. The structure, intensity and track of the cyclones are found to be better simulated by finer resolution of the model as compared to the coarse resolution. Rainfall amount and its distribution are also found to be sensitive to the model horizontal resolution. Other important fields, viz., vertical velocity, horizontal divergence and horizontal moisture flux are also found to be sensitive to model horizontal resolution and are better simulated by the model with finer horizontal grids.
Volume 123 Issue 4 June 2014 pp 689-703
The upper air RS/RW (Radio Sonde/Radio Wind) observations at Kolkata (22.65N, 88.45E) during premonsoon season March–May, 2005–2012 is used to compute some important dynamic/thermodynamic parameters and are analysed in relation to the precipitation associated with the thunderstorms over Kolkata, India. For this purpose, the pre-monsoon thunderstorms are classified as light precipitation (LP), moderate precipitation (MP) and heavy precipitation (HP) thunderstorms based on the magnitude of associated precipitation. Richardson number in non-uniformly saturated ($R_i$*) and saturated atmosphere ($R_i$); vertical shear of horizontal wind in 0–3, 0–6 and 3–7 km atmospheric layers; energy-helicity index (EHI) and vorticity generation parameter (VGP) are considered for the analysis. The instability measured in terms of Richardson number in non-uniformly saturated atmosphere ($R_i$∗) well indicate the occurrence of thunderstorms about 2 hours in advance. Moderate vertical wind shear in lower troposphere (0–3 km) and weak shear in middle troposphere (3–7 km) leads to heavy precipitation thunderstorms. The wind shear in 3–7 km atmospheric layers, EHI and VGP are good predictors of precipitation associated with thunderstorm. Lower tropospheric wind shear and Richardson number is a poor discriminator of the three classified thunderstorms.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.