• M Khoshsima

      Articles written in Journal of Earth System Science

    • Estimation of urban mixed layer height in Zanjan using LIDAR observations and numerical modeling

      A A Bidokhti M Khoshsima S Sabetghadam H M Khalesifard

      More Details Abstract Fulltext PDF

      Air pollution predictions often require the height of atmospheric mixed layer in time especially in big cities. Here, the variation of the height of this layer is estimated from direct measurements and also from a numerical forecast model with a high resolution boundary layer scheme. The height of the daytime mixed layer for the city of Zanjan (48.5°N, 36.7°E, 1700 m above sea level)is measured using a LIDAR (532 nm)system, which works based on aerosols scattering of laser light. The mixed layer height ($z_i$) for Zanjan city, well above mean sea level compared to other major cities in the world,is found to be between 1.4 km typically in spring and 2.2 km in summer, for synoptic calm conditions. Also, the MM5 forecast model with a proper boundary layer scheme (MRF)is used to estimate $z_i$ which shows rather good agreement with direct observations using the LIDAR system. The entrainment zone of the mixed layer was also found to undergo some occasional temporal growth that may be attributed to shear instability that led to more mixed layer growth.

    • Variations of aerosol optical depth and Angstrom parameters at a suburban location in Iran During 2009–2010

      M Khoshsima A A Bidokhti F Ahmadi-Giv

      More Details Abstract Fulltext PDF

      Solar irradiance is attenuated spectrally when passing through the earth’s atmosphere and it is strongly dependent on sky conditions, cleanliness of the atmosphere, composition of aerosols and gaseous constituents. In this paper, aerosol optical properties including aerosol optical depth (AOD), Angstrom exponent (𝛼) and Angstrom turbidity coefficient (𝛽) have been investigated during December 2009 to October 2010, in a suburban area of Zanjan (36°N, 43°E, 1700 m), in the north–west of Iran, using meteorological and sun photometric data. Results show that turbidity varies on all time scales, from the seasonal to hourly, because of changes in the atmospheric meteorological parameters. The values of 𝛼 range from near zero to 1.67. The diurnal variation of AOD in Zanjan is about 15%. The diurnal variability of AOD, showed a similar variation pattern in spring (including March, April, May) and winter (December, January, February) and had a different variation pattern in summer (June, July, August) and autumn (September and October). During February, spring and early summer winds transport continental aerosols mostly from the Iraq (dust events) and cause the increase of beta and turbidity of atmosphere of Zanjan.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.