• M Israil

      Articles written in Journal of Earth System Science

    • Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India

      M Israil D K Tyagi P K Gupta Sri Niwas

      More Details Abstract Fulltext PDF

      Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand,India.The profile passing through major Himalayan thrusts:Himalayan Frontal Thrust (HFF),Main Boundary Thrust (MBT)and Main Central Thrust (MCT),is nearly perpendicular to the regional geological strike.Data processing and impedance analysis indicate that out of 44 stations MT data recorded,only 27 stations data show in general,the validity of 2D assumption.The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition.2D smooth geoelectrical model has been presented,which provides the electrical image of the shallow and deeper crustal structure.The major features of the model are (i)a low resistivity (> 50𝛺 m),shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain,(ii)highly resistive (< 1000 𝛺m)zone below the sediments at a depth of 6 km,interpreted as the top surface of the Indian plate,(iii)a low resistivity (> 10𝛺 m) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth.Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.

    • Geoelectric structure estimated from magnetotelluric data from the Uttarakhand Himalaya, India

      Rohit Miglani M Shahrukh M Israil Pravin K Gupta S K Varshney Sokolova Elena

      More Details Abstract Fulltext PDF

      Geoelectric strike and resistivity structure of the crust have been estimated from 37 magnetotelluric (MT) data sites along a profile from Roorkee to Gangotri in Uttarakhand Himalaya. Impedance decomposition schemes based on Bahr’s, Groom Bailey and Phase tensor were implemented in a MATLAB code for the average strike estimation. Geoelectric strike direction varies with period as well as in different lithotectonic units along the profile. In the period band from 1 to 100 s average geoelectric strike in the southern end of the profile (Indo-Gangetic Plains) is N79°W, which is slightly rotated to the north in the Lesser Himalayan region and becomes N68°W whereas it is N81°W in the Higher Himalayan region. However, average strike is stabilized to N77°W for the entire profile in the long period band (100–1000 s). Geoelectrical structure of the crust has been obtained along the profile by 2D inversion of MT data. Major features of 2D resistivity model are: (i) southern part of the model is a low resistivity (> 50 𝛺m) zone at shallow depth (5–7 km) representing the loose sediments of the Indo-Gangetic Plains (IGP), whose thickness increases in the south; (ii) highly resistive (>1000 𝛺m) layer below the IGP sediments is the basement rock, representing the resistivity of the top of the subducting Indian Plate; (iii) the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) zones can be seen in the electrical image. However, the Himalayan Frontal Thrust (HFT) could not be resolved and (iv) a low resistivity (> 10 𝛺m) feature in the MCT zone extending to the depth of 30 km is delineated. This low resistivity could be due to fluid-filled fractured rock matrix or partial melt zone. Hypocenters of many earthquakes are concentrated along the boundary of this low resistivity zone and relatively high resistivity blocks around it. The resulted model supports flat-ramp-flat geometry of the Main Himalayan Thrust along which the Indian Plate is subducting.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.