• M Dileep Kumar

      Articles written in Journal of Earth System Science

    • Controls of dimethyl sulphide in the Bay of Bengal during BOBMEX-Pilot cruise 1998

      D M Shenoy M Dileep Kumar V V S S Sarma

      More Details Abstract Fulltext PDF

      The air-sea exchange is one of the main mechanisms maintaining the abundances of trace gases in the atmosphere. Some of these, such as carbon dioxide and dimethyl sulphide (DMS), will have a bearing on the atmospheric heat budget. While the former facilitates the trapping of radiation (greenhouse effect) the latter works in the opposite direction through reflectance of radiation back into space by sulphate aerosols that form from oxidation of DMS in atmosphere. Here we report on the first measurements made on DMS in the Bay of Bengal and the factors regulating its abundance in seawater. Phytoplankton alone does not seem to control the extent of DMS concentrations. We find that changes in salinity could effectively regulate the extent of DMSP production by marine phytoplankton. In addition, we provide the first ever evidence to the occurrence of DMS precursor, DMSP, in marine aerosols collected in the boundary layer. This suggests that the marine aerosol transport of DMSP will supplement DMS gaseous evasion in maintaining the atmospheric non-sea salt sulphur budget.

    • Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea

      S Prasanna Kumar M Madhupratap M Dileep Kumar M Gauns P M Muraleedharan V V S S Sarma S N De Souza

      More Details Abstract Fulltext PDF

      Usingin situ data collected during 1992–1997, under the Indian programme of Joint Global Ocean Flux Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along the coastal regions of Somalia, Arabia and southern parts of the west coast of India due to coastal upwelling but also in the open waters of the central region. The open waters in the north are fertilized by a combination of divergence driven by cyclonic wind stress curl to the north of the Findlater Jet and lateral advection of nutrient-rich upwelled waters from Arabia. Productivity in the southern part of the central Arabian Sea, on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter. During both spring and fall inter-monsoons, this sea remains warm and stratified with low production as surface waters are oligotrophic. Inter-annual variability in physical forcing during winter resulted in one-and-a-half times higher production in 1997 than in 1995.

    • Abundance and relationship of bacteria with transparent exopolymer particles during the 1996 summer monsoon in the Arabian Sea

      N Ramaiah V V S S Sarma Mangesh Gauns M Dileep Kumar M Madhupratap

      More Details Abstract Fulltext PDF

      Bacterial abundance and production, numbers, sizes and concentrations of transparent exopolymer particles (TEP) and total organic carbon (TOC) were measured during the 1996 summer monsoon to understand the relationship between TEP, the most labile particulate organic carbon, and bacteria. While high regional variability in the vertical distribution of TOC was discernible, TEP concentrations were high in surface waters at 18–20°N along 64°E with concentrations well over 25 mg alginic acid equivalents I−1 due to upwelling induced productivity. Their concentrations decreased with depth and were lower between 200 and 500 m. Bacterial concentrations were up to 1.99 × 108 I–1 in the surface waters and decreased by an order of magnitude or more at depths below 500 m. A better relationship has been found between bacterial abundance and concentrations of TEP than between bacteria and TOC, indicating that bacterial metabolism is fueled by availability of TEP in the Arabian Sea. Assuming a carbon assimilation of 33%, bacterial carbon demand (BCD) is estimated to be 1.017 to 4.035 g C m–2 d–1 in the surface waters. The observed TEP concentrations appear to be sufficient in meeting the surface and subsurface BCD in the northern Arabian Sea.

    • Seasonal controls on surface pCO2 in the central and eastern Arabian Sea

      V V S S Sarma M Dileep Kumar M Gauns M Madhupratap

      More Details Abstract Fulltext PDF

      The variability in partial pressure of carbon dioxide (pCO2) and its control by biological and physical processes in the mixed layer (ML) of the central and eastern Arabian Sea during inter-monsoon, northeast monsoon, and southwest monsoon seasons were studied. The ML varied from 80–120 m during NE monsoon, 60–80 m and 20–30 m during SW- and inter-monsoon seasons, respectively, and the variability resulted from different physical processes. Significant seasonal variability was found in pCO2 levels. During SW monsoon, coastal waters contain two contrasting regimes; (a) pCO2 levels of 520–685 μatm were observed in the SW coast of India, the highest found so far from this region, driven by intense upwelling and (b) low levels of pCO2 (266 μatm) were found associated with monsoonal fresh water influx. It varied in ranges of 416–527 μatm and 375–446 μatm during inter- and NE monsoon, respectively, in coastal waters with higher values occurring in the north. The central Arabian Sea pCO2 levels were 351–433, 379–475 and 385–432 μatm during NE-inter and SW monsoon seasons, respectively. The mixed layer pCO2 relations with temperature, oxygen, chlorophylla and primary production revealed that the former is largely regulated by physical processes during SW- and NE monsoon whereas both physical and biological processes are important in inter-monsoon. Application of Louanchiet al (1996) model revealed that the mixing effect is the dominant during monsoons, however, the biological effect is equally significant during SW monsoon whereas thermodynamics and fluxes influence during inter-monsoons.

    • Observations of trace gases and aerosols over the Indian Ocean during the monsoon transition period

      T K Manual Ateef Khan Y Nazeer Ahammed R S Tanwar R S Parmar K S Zalpuri Prabhat K Gupta S L Jain Risal Singh A P Mitra S C Garg A Suryanarayana V S N Murty M Dileep Kumar Andrew J Shepherd

      More Details Abstract Fulltext PDF

      Characteristics of trace gases (O3, CO, CO2, CH4 and N2O) and aerosols (particle size of 2.5 micron) were studied over the Arabian Sea, equatorial Indian Ocean and southwest part of the Bay of Bengal during the monsoon transition period (October–November, 2004). Flow of pollutants is expected from south and southeast Asia during the monsoonal transition period due to the patterns of wind flow which are different from the monsoon period. This is the first detailed report on aerosols and trace gases during the sampled period as the earlier Bay of Bengal Experiment (BOBMEX), Arabian Sea Monsoon Experiment (ARMEX) and Indian Ocean Experiments (INDOEX) were during monsoon seasons. The significant observations during the transition period include: (i) low ozone concentration of the order of 5 ppbv around the equator, (ii) high concentrations of CO2, CH4 and N2O and (iii) variations in PM2.5 of 5–20μg/m3.

    • Meso-scale atmospheric events promote phytoplankton blooms in the coastal Bay of Bengal

      K Maneesha V V S S Sarma N P C Reddy Y Sadhuram T V Ramana Murty V V Sarma M Dileep Kumar

      More Details Abstract Fulltext PDF

      The Bay of Bengal is considered to be a low productive region compared to the Arabian Sea based on conventional seasonal observations. Such seasonal observations are not representative of a calendar year since the conventional approach might miss episodic high productive events associated with extreme atmospheric processes. We examined here the influence of extreme atmospheric events, such as heavy rainfall and cyclone Sidr, on phytoplankton biomass in the western Bay of Bengal using both in situ time-series observations and satellite derived Chlorophyll 𝑎 (Chl 𝑎) and sea surface temperature (SST). Supply of nutrients through the runoff driven by episodic heavy rainfall (234 mm) on 4–5 October 2007 caused an increase in Chl 𝑎 concentration by four times than the previous in the coastal Bay was observed within two weeks. Similar increase in Chl 𝑎, by 3 to 10 times, was observed on the right side of the cyclone Sidr track in the central Bay of Bengal after the cyclone Sidr. These two episodic events caused phytoplankton blooms in the western Bay of Bengal which enhanced ∼40% of fishery production during October–December 2007 compared to that in the same period in 2006.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.