• Lars Scharfenberg

      Articles written in Journal of Earth System Science

    • In situ gamma radiation measurements in the Neoproterozoic rocks of Sirohi region, NW India

      Lars Scharfenberg Helga De Wall Stefan Schöbel Alexander Minor Marcel Maurer Manoj K Pandit Kamal K Sharma

      More Details Abstract Fulltext PDF

      Natural gamma ray measurements using a portable device were performed at 157 sites in the area around Sirohi town and Sindreth village in Rajasthan (NW India). This region comprises sedimentary rocks, metasediments, granites and gneisses that bear characteristic GR dose values and U/Th ratios corresponding with their specific geological history. A-type Malani granites and rhyolitic derivates, also referred as high heat production granites, show distinct differences as compared to the S-type Erinpura and Balda granites, most prominent in a high Th content of the former (up to 90 ppm). Sedimentary rocks in the Sirohi and Sindreth area are variable in their signatures reflecting their variable source rocks. In the area between the Balda and Paladi villages, northeast of Sirohi, measurements in vicinity of a N–S running shear zone, have shown U enrichment up to 8 ppm. This shear zone has been synkinematically mineralized with quartz and shows evidence of fluid infiltration into the host rocks in the vicinity of the shear zone. Erinpura granites have been altered due to fluid activity and show a light depletion of K (3.96%) and Th (20.11 ppm) as compared to the unaltered rocks (K, 4.06; Th 24.46 ppm). Enrichment of U (with a mean value of 13 ppm) has also been recorded in the lower clastic unit of the Sindreth Basin, especially within gritty conglomerates wherein migration and precipitation along fault planes is proposed.

    • Differences in natural gamma radiation characteristics of Erinpura and Malani granites in NW India

      Lars Scharfenberg Sebastian Jandausch Lina Anetzberger Anette Regelous Kamal K Sharma Helga De Wall

      More Details Abstract Fulltext PDF

      In NW India, large volumes of exposed Neoproterozoic basement rocks are formed by two magmatic suites, Erinpura granites as a late thermal event with respect to the $\sim$1 Ga Delhi Orogeny and the younger Malani igneous suite (770–750 Ma). Average uranium and thorium equivalent concentrations (in ppm) inferred from spectroscopic gamma radiation survey are higher in Malani rocks (Th 47.33 ppm and U 6.95 ppm) as compared to the Erinpura granites (Th 33.55 ppm and U 4.77 ppm). These values are considerably above the granite world average (Th 14.8 $\pm$ 13.2 ppm; U 3.93 $\pm$ 3.27 ppm). High U (up to 19 ppm) and Th (up to 88 ppm) in some Malani granites and a constant Th–U ratio of 7 points to a high degree of fractionation of the felsic magma. Higher radioelement concentration in the east (Mirpur granite) as compared to the west (Jaswantpura granite) is substantiated by geochemical data. Areas to the west and east of the Sirohi frontal thrust show differences, most likely a consequence of anatexis in the eastern sector. A high linear correlation between inductively coupled plasma mass spectrometry and gamma-ray data underlines the suitability of in-situmeasurements for the determination of U and Th concentrations during a field survey providing basic information for future petrogenetic and risk-hazard studies in this granitic terrain.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.