• L V G Rao

      Articles written in Journal of Earth System Science

    • Thermohaline structure and circulation in the upper layers of the southern Bay of Bengal during BOBMEX-Pilot (October–November 1998)

      V Ramesh Babu V S N Murty L V G Rao C V Prabhu V Tilvi

      More Details Abstract Fulltext PDF

      Hydrographic data collected on board ORV Sagar Kanya in the southern Bay of Bengal during the BOBMEX-Pilot programme (October–November 1998) have been used to describe the thermohaline structure and circulation in the upper 200 m water column of the study region. The presence of seasonal Inter-Tropical Convergence Zone (ITCZ) over the study area, typically characterized with enhanced cloudiness and flanked by the respective east/northeast winds on its northern part and west/southwest winds on its southern part, has led to net surface heat loss of about 55 W/m2. The sea surface dynamic topography relative to 500 db shows that the upper layer circulation is characterised by a cyclonic gyre encompassing the study area. The eastward flowing Indian Monsoon Current (IMC) between 5‡N and 7‡N in the south and its northward branching along 87‡E up to 13‡N appear to feed the cyclonic gyre. The Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents confirm the presence of the cyclonic gyre in the southern Bay of Bengal during the withdrawing phase of the southwest monsoon from the northern/central parts of the Bay of Bengal.

    • Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October–November, 1998 (BOBMEX-Pilot)

      V S N Murty V Ramesh Babu L V G Rao Charuta V Prabhu V Tilvi

      More Details Abstract Fulltext PDF

      Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7‡N, 10‡N, and 13‡N locations along 87‡E during October–November, 1998 under BOBMEX-Pilot programme. These data have been analysed to examine the diurnal variability of upper oceanic heat budget and to estimate the eddy diffusivity coefficient of heat in the upper layer. Diurnal variation of near-surface temperature is typical at northern location (13‡N) with a range of 0.5‡C while the diurnal range of temperature is enhanced to 0.8‡C at the central location (10‡N) due to intense solar radiation (1050 W/m2), clear skies and low wind speeds. At the southern location (7‡N), the diurnal variation of temperature is atypical with the minimum temperature occurring at 2000 hrs instead of at early morning hours. In general, the diurnal curve of temperature penetrated up to 15 to 20 m with decreasing diurnal range with depth. The VM-ADCP measured horizontal currents in the upper ocean were predominantly easterly/northeasterly at southern location, north/northerly at central location and northwesterly at northern location, thus describing a large-scale cyclonic gyre with the northward meridional flow along 87‡E. The magnitudes of heat loss at the surface due to air-sea heat exchanges and in the upper 50 m layer due to vertical diffusion of heat are highest at the southern location where intense convective activity followed by overcast skies and synoptic disturbance prevailed in the lower atmosphere. This and the estimated higher value (0.0235 m2/s) of eddy diffusivity coefficient of heat in the upper ocean (0–50 m depth) suggest that 1-D processes controlled the upper layer heat budget at the southern location. On the other hand, during the fair weather conditions, at the central and northern locations, the upper layer gained heat energy, while the sea surface lost (gained) heat energy at northern (central) location. This and lower values of eddy diffusivity coefficient of heat (0.0045 and 0.0150 m2/s) and the northward intensification of horizontal currents at these locations suggest the greater role of horizontal heat advection over the 1-D processes in the upper ocean heat budget at these two locations.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.