• Kamal K Sharma

      Articles written in Journal of Earth System Science

    • Continental rift-setting and evolution of Neoproterozoic Sindreth Basin in NW-India

      Stefan Schöbel Kamal K Sharma Thorsten Hörbrand Theresa Böhm Ines Donhauser Helga de Wall

      More Details Abstract Fulltext PDF

      The Neoproterozoic Sindreth Basin, NW India, and its surrounding area represent a half graben structure situated between the undeformed Malani Igneous Suite (MIS) in the west and a corridor of coeval Cryogenian ductile deformation, anatexis and granite intrusion in the east. The main lithologies observed in the basin are conglomerate, fanglomerate, debris flow and lake deposits derived from a nearby continental provenance, intercalated with concurrent mafic and felsic lava flows. Based on geological traverses across the strike of the basin, we propose a three-fold classification comprising Lower Clastic Unit and an Upper Clastic Unit and a Bimodal (basalt–rhyolite) Volcanic Unit separating the two. Tilting due to basin inversion and faulting has been observed; however, the rocks are unmetamorphosed and show undisturbed primary sedimentary features. The stratigraphic record of the basin is characteristic for deposition and magmatism in a fault-related continental setting. Implications of the findings have been discussed in the context of Neoproterozoic crustal dynamics in NW India. This study provides conclusive evidence for a continental setting for Sindreth Basin evolution and contests the recent models of active subduction setting (either back-arc basin or accretionary sediments over a subduction zone).

    • Differences in natural gamma radiation characteristics of Erinpura and Malani granites in NW India

      Lars Scharfenberg Sebastian Jandausch Lina Anetzberger Anette Regelous Kamal K Sharma Helga De Wall

      More Details Abstract Fulltext PDF

      In NW India, large volumes of exposed Neoproterozoic basement rocks are formed by two magmatic suites, Erinpura granites as a late thermal event with respect to the $\sim$1 Ga Delhi Orogeny and the younger Malani igneous suite (770–750 Ma). Average uranium and thorium equivalent concentrations (in ppm) inferred from spectroscopic gamma radiation survey are higher in Malani rocks (Th 47.33 ppm and U 6.95 ppm) as compared to the Erinpura granites (Th 33.55 ppm and U 4.77 ppm). These values are considerably above the granite world average (Th 14.8 $\pm$ 13.2 ppm; U 3.93 $\pm$ 3.27 ppm). High U (up to 19 ppm) and Th (up to 88 ppm) in some Malani granites and a constant Th–U ratio of 7 points to a high degree of fractionation of the felsic magma. Higher radioelement concentration in the east (Mirpur granite) as compared to the west (Jaswantpura granite) is substantiated by geochemical data. Areas to the west and east of the Sirohi frontal thrust show differences, most likely a consequence of anatexis in the eastern sector. A high linear correlation between inductively coupled plasma mass spectrometry and gamma-ray data underlines the suitability of in-situmeasurements for the determination of U and Th concentrations during a field survey providing basic information for future petrogenetic and risk-hazard studies in this granitic terrain.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.