• K R L Saranya

      Articles written in Journal of Earth System Science

    • Long term changes in forest cover and land use of Similipal Biosphere Reserve of India using satellite remote sensing data

      K R L Saranya C Sudhakar Reddy

      More Details Abstract Fulltext PDF

      The spatial changes in forest cover of Similipal Biosphere Reserve, Odisha, India over seven decades(1930–2012) in the last century has been quantified by using multi-temporal data from different sources.Over the period, the forest cover reduced by 970.8 km2 (23.6% of the total forest), and most significantlyduring the period, 1930–1975. Human-induced activities like conversion of forest land for agriculture,construction of dams and mining activities have been identified as major drivers of deforestation. Spatialanalysis indicates that 399 grids (1 grid = 1 × 1 km) have undergone large-scale changes in forest cover(>75 ha) during 1930–1975, while only 3 grids have shown >75 ha loss during 1975–1990. Annual netrate of deforestation was 0.58 during 1930–1975, which has been reduced substantially during 1975–1990 (0.04). Annual gross rate of deforestation in 2006–2012 is indeed low (0.01) as compared to thenational and global average. This study highlights the impact and effectiveness of conservation practicesin minimizing the rate of deforestation and protecting the Similipal Biosphere Reserve.

    • Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

      C Sudhakar Reddy V V L Padma Alekhya K R L Saranya K Athira C S Jha P G Diwakar V K Dadhwal

      More Details Abstract Fulltext PDF

      Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km², respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO₂ emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO₂ emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO₂ emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO₂ emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.