• K S Yajnik

      Articles written in Journal of Earth System Science

    • Seasonal variation of chlorophyll and primary productivity in central Arabian Sea: A macrocalibrated upper ocean ecosystem model

      M K Sharada K S Yajnik

      More Details Abstract Fulltext PDF

      Seasonal variation of chlorophyll has been of considerable interest on account of the effect of photosynthesis on ocean-atmosphere carbon exchange. It can be predicted by a dynamical system model of the marine ecosystem coupled with a physical oceanographic model. There is however a major difficulty in the calibration of contemporary ecosystem models on account of sparse data and a large number of model parameters. This paper reports a new approach of macrocalibration in which values of six parameters are determined by examining in detail the seasonal variation of chlorophyll and primary productivity keeping in view the observations of two Indian JGOFS cruises. Both switching and non-switching versions of grazing functions are used in a 7-component FDM model. Detailed simulations are reported for one station (16°N, 65°E). They show the effects of dependence of grazing preference on prey density on the behaviour of the ecosystem. The results of the simulation also provide a partial basis for developing correlations of primary production with chlorophyll and sediment flux.

    • Sea surface heights obtained from Modular Ocean Model simulation and comparison with Topex/Poseidon data for the Indian Ocean

      P S Swathi K S Yajnik

      More Details Abstract Fulltext PDF

      The Modular Ocean Model (MOM) is perhaps the most versatile ocean model available today for the simulation of the large scale circulation of the ocean. The Topex/Poseidon altimeter which has been operating since September 1992 has been providing sea surface heights (SSH) of the accuracy of 5–10 cms with a repeat cycle of 10 days. We examine in this paper, the SSH in the Indian Ocean obtained from a global simulation of MOM with a resolution of 1° in the longitude, 1/3° in the latitude between 30°S and 30°N and 20 levels in the vertical with climatological windforcing and restoring conditions on temperature and salinity. They are compared with the SSH from the Topex/Poseidon altimeter after suitable filtering in the time domain to remove smaller time and length scales. In addition, unfiltered data from both sources are analysed by estimating the cross-spectral density to find the coherence and crossphase at different frequencies. The agreement between the two, over most of the Northern Indian Ocean, especially the Arabian Sea and the Bay of Bengal is quite good.

    • TROPMET 97: An overview

      B N Goswani K S Yajnik

      More Details Fulltext PDF
    • A coupled physical-biological-chemical model for the Indian Ocean

      P S Swathi M K Sharada K S Yajnik

      More Details Abstract Fulltext PDF

      A coupled physical-biological-chemical model has been developed at C-MMACS. for studying the time-variation of primary productivity and air-sea carbon-dioxide exchange in the Indian Ocean. The physical model is based on the Modular Ocean Model, Version 2 (MOM2) and the biological model describes the nonlinear dynamics of a 7-component marine ecosystem. The chemical model includes dynamical equation for the evolution of dissolved inorganic carbon and total alkalinity. The interaction between the biological and chemical model is through the Redfield ratio. The partial pressure of carbon dioxide (pCO2) of the surface layer is obtained from the chemical equilibrium equations of Penget al 1987. Transfer coefficients for air-sea exchange of CO2 are computed dynamically based on the wind speeds. The coupled model reproduces the high productivity observed in the Arabian Sea off the Somali and Omani coasts during the Southwest (SW) monsoon. The entire Arabian Sea is an outgassing region for CO2 in spite of high productivity with transfer rates as high as 80 m-mol C/m2 /day during SW monsoon near the Somali Coast on account of strong winds.

    • Role of biology in the air–sea carbon flux in the Bay of Bengal and Arabian Sea

      M K Sharada P S Swathi K S Yajnik C Kalyani Devasena

      More Details Abstract Fulltext PDF

      A physical-biological-chemical model (PBCM)is used for investigating the seasonal cycle of air –sea carbon flux and for assessing the effect of the biological processes on seasonal time scale in the Arabian Sea (AS)and Bay of Bengal (BoB),where the surface waters are subjected to contrasting physical conditions.The formulation of PBCM is given in Swathi et al (2000),and evaluation of several ammonium-inhibited nitrate uptake models is given in Sharada et al (2005). The PBCM is here first evaluated against JGOFS data on surface pCO2 in AS, Bay of Bengal Process Studies (BoBPS)data on column integrated primary productivity in BoB,and WOCE I1 data on dissolved inorganic carbon (DIC)and alkalinity (ALK)in the upper 500 meters at 9°N in AS and at 10°N in BoB in September –October.There is good qualitative agreement with local quantitative discrepancies.

      The net effect of biological processes on air –sea carbon flux on seasonal time scale is determined with an auxiliary computational experiment,called the abiotic run,in which the biological processes are turned off.The difference between the biotic run and abiotic run is interpreted as the net effect of biological processes on the seasonal variability of chemical variables.The net biological effect on air –sea carbon flux is found to be highest in southwest monsoon season in the northwest AS, where strong upwelling drives intense new production.The biological effect is larger in AS than in BoB,as seasonal upwelling and mixing are strong in AS,especially in the northeast,while coastal upwelling and mixing are weak in BoB.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.