• K Rupa Kumar

      Articles written in Journal of Earth System Science

    • Global features of upper-tropospheric zonal wind and thermal fields during anomalous monsoon situations

      L S Hingane S D Patil K Rupa Kumar

      More Details Abstract Fulltext PDF

      Global analyses of mean monthly zonal wind component and temperature at 200, 150 and 100 mb levels have been made for the region between 60°N and 60°S, for the months May through September during two poor monsoon years (1972 and 1979) and a good monsoon year (1975). Prominent and consistent contrasting features of the zonal wind and thermal fields have been identified, with reference to the monsoon performance over India. It has been noticed that the areal spreading of easterlies over the tropics and extratropics is significantly more during a good monsoon year. Shifting of the axis of the tropical easterly jet stream to a higher level and generally stronger easterlies also characterize good monsoon activity. The upper troposphere has been found to be considerably cooler during poor monsoon years.

    • Homogeneous Indian Monsoon rainfall: Variability and prediction

      B Parthasarathy K Rupa Kumar A A Munot

      More Details Abstract Fulltext PDF

      The Indian summer monsoon rainfall is known to have considerable spatial variability, which imposes some limitations on the all-India mean widely used at present. To prepare a spatially coherent monsoon rainfall series for the largest possible area, fourteen subdivisions covering the northwestern and central parts of India (about 55% of the total area of the country), having similar rainfall characteristics and associations with regional/global circulation parameters are merged and their area-weighted means computed, to form monthly and seasonal Homogeneous Indian Monsoon (HIM) rainfall series for the period 1871–1990. This paper includes a listing of monthly and seasonal rainfall of HIM region. HIM rainfall series has been statistically analysed to understand its characteristics, variability and teleconnections for long-range prediction.

      HIM rainfall series isfound to be homogeneous, Gaussian distributed and free from persistence. The mean (R) rainfall is 757 mm (87% of annual) and standard deviation (S) 119 mm, with a Coefficient of Variation (CV) of 16%. There were 21 dry (K, -<R S) and 19 wet (Ri R + S) years during 1871–1990. There were clusters of frequent negative departures during 1899–1920 and 1965–1987 and positive departures during 1942–1961. The recent three decades show very high rainfall variability with 10 dry and 6 wet years. The decadal averages were alternatively positive and negative for three consecutive decades, viz., 1871–1900 (positive); 1901–1930 (negative); 1931–1960 (positive) and 1961–1990 (negative) respectively. Significant QBO and autocorrelation at 14th lag have been found in HIM rainfall series.

      To delineate the changes in the climatic regime of the Indian summer monsoon, sliding correlation coefficients (CCs) between HIM rainfall series and (i) Bombay msl pressure, (ii) Darwin msl pressure and (iii) Northern Hemisphere surface air temperature over the period 1871–1990 have been examined. The 31-year sliding CCs showed the systematic turning points of positive and negative CCs around the years, 1900 and 1940. In the light of other corroborative evidences, these turning points seem to delineate ‘meridional’ monsoon regime during 1871–1900 and 1940–1990 and ‘zonal’ monsoon regime during 1901–1940. The monsoon signal is particularly dominant in many regional and global circulation parameters, during 1951–1990.

      Using the teleconnections ofHIM series with 12 regional/global circulation parameters during the recent 36-year period 1951–86 regression models have been developed for long-range prediction. In the regression equations 3 to 4 parameters were entered, explaining upto 80% of the variance, depending upon the data period. The parameters that prominently enter the multiple regression equations are (i) Bombay msl pressure, (ii) April 500 mb Ridge at 75°E, (iii) NH temperature, (iv) Nouvelle minus Agalega msl pressure and (v) South American msl pressure. Eleven circulation parameters for the period 1951–80 were subjected to Principal Component Analysis (PCA) and the PC’s were used in the regression model to estimate HIM rainfall. The multiple regression with three PCs explain 72% of variance in HIM rainfall.

    • Recent trends in pre-monsoon daily temperature extremes over India

      D R Kothawale J V Revadekar K Rupa Kumar

      More Details Abstract Fulltext PDF

      Extreme climate and weather events are increasingly being recognized as key aspects of climate change. Pre-monsoon season (March–May) is the hottest part of the year over almost the entire South Asian region, in which hot weather extremes including heat waves are recurring natural hazards having serious societal impacts, particularly on human health. In the present paper, recent trends in extreme temperature events for the pre-monsoon season have been studied using daily data on maximum and minimum temperatures over a well-distributed network of 121 stations for the period 1970–2005. For this purpose, time series of extreme temperature events have been constructed for India as a whole and seven homogeneous regions, viz., Western Himalaya (WH), Northwest (NW), Northeast (NE), North Central (NC), East coast (EC), West coast (WC) and Interior Peninsula (IP).

      In general, the frequency of occurrence of hot days and hot nights showed widespread increasing trend, while that of cold days and cold nights has shown widespread decreasing trend. The frequency of the occurrence of hot days is found to have significantly increased over EC, WC and IP, while that of cold days showed significant decreasing trend over WH and WC. The three regions EC, WC and NW showed significant increasing trend in the frequency of hot nights. For India as whole, the frequency of hot days and nights showed increasing trend while cold days and nights showed decreasing trends. Day-to-day fluctuations of pre-monsoon daily maximum and minimum temperatures have also been studied for the above regions. The results show that there is no significant change in day-to-day magnitude of fluctuations of pre-monsoon maximum and minimum temperatures. However, the results generally indicate that the daily maximum and minimum temperatures are becoming less variable within the season.

    • Characteristic features of winter precipitation and its variability over northwest India

      R K Yadav K Rupa Kumar M Rajeevan

      More Details Abstract Fulltext PDF

      Northwestern parts of India receive considerable amount of precipitation during the winter months of December–March. Although, it is only about 15% of the annual precipitation, the precipitation is very important for rabi crops and to maintain the glaciers extend in the Himalaya, which melt and supply water to the rivers during other seasons. The precipitation is mainly associated with the sequence of synoptic systems known as ‘western disturbances’. The precipitation has considerable spatial and temporal variability, with maximum precipitation occurring particularly over northern hilly regions, with decreasing influence southwards. The spatially coherent winter precipitation series has been prepared for the largest possible area comprising nine meteorological subdivisions of northwest India, which constitute about 32% of the total area of the country, having similar precipitation characteristics. The precipitation series has been statistically analysed to understand its characteristics and variability. The seasonal precipitation series is found to be homogeneous, Gaussian (normal) distributed and free from persistence. The precipitation variability has increased during the most recent three decades with more excess and deficient years.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.