• K Niranjan

      Articles written in Journal of Earth System Science

    • Characteristics of spectral aerosol optical depths over India during ICARB

      S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K Satheesh V Vinoj R Ramakrishna Reddy K Rama Gopal K V S Badarinath K Niranjan Santosh Kumar Pandey M Behera A Jeyaram P K Bhuyan M M Gogoi Sacchidanand Singh P Pant U C Dumka Yogesh Kant J C Kuniyal Darshan Singh

      More Details Abstract Fulltext PDF

      Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived ˚Angström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The ˚Angström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from the adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the ˚Angström exponent (𝛼) remained significantly lower (∼1) over the Arabian Sea compared to Bay of Bengal (BoB) (∼1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of 𝛼, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in 𝛼 over the BoB.

    • Size segregated aerosol mass concentration measurements over the Arabian Sea during ICARB

      Vijayakumar S Nair K Krishna Moorthy S Suresh Babu K Narasimhulu L Siva Sankara Reddy R Ramakrishna Reddy K Rama Gopal V Sreekanth B L Madhavan K Niranjan

      More Details Abstract Fulltext PDF

      Mass concentration and mass size distribution of total (composite) aerosols near the surface are essential inputs needed in developing aerosol models for radiative forcing estimation as well as to infer the environment and air quality. Using extensive measurements onboard the oceanographic research vessel, Sagar Kanya, during its cruise SK223B in the second phase of the ocean segment of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), the spatial distribution of the mass concentration and mass size distribution of near-surface aerosols are examined for the first time over the entire Arabian Sea, going as far as 58°E and 22°N, within a span of 26 days. In general, the mass concentrations $(M_T)$ were found to be low with the mean value for the entire Arabian Sea being 16.7 ± 7 𝜇 g m−3; almost 1/2 of the values reported in some of the earlier campaigns. Coarse mode aerosols contributed, on an average, 58% to the total mass, even though at a few pockets accumulation mode contribution dominated. Spatially, significant variations were observed over central and northern Arabian Sea as well as close to the west coast of India. In central Arabian Sea, even though the $M_T$ was quite low, contribution of accumulation aerosols to the total mass concentration was greater than 50%. Effective radius, a parameter important in determining scattering properties of aerosol size distribution, varied between 0.07 and 0.4 𝜇 m with a mean value of 0.2 𝜇 m. Number size distributions, deduced from the mass size distributions, were approximated to inverse power-law form and the size indices (𝜐) were estimated. It was found to vary in the range 3.9 to 4.2 with a mean value of 4.0 for the entire oceanic region. Extinction coefficients, estimated using the number-size distributions, were well-correlated with the accumulation mode mass concentration with a correlation coefficient of 0.82.

    • Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of India during ICARB – Signatures of transport onto Bay of Bengal

      K Niranjan V Sreekanth B L Madhavan T Anjana Devi B Spandana

      More Details Abstract Fulltext PDF

      Realizing the importance of aerosol physical properties at the adjoining continental and coastal locations in the airmass pathways onto the oceanic region, extensive measurements of aerosol physical properties were made at Visakhapatnam (17.7°N, 83.3°E), an eastern coastal location in peninsular India during the ICARB period. The temporal variations of aerosol optical depth, near surface aerosol mass size distributions and BC mass concentrations show significantly higher aerosol optical depth and near surface mass concentrations during the first and last weeks of April 2007. The mean BC mass fraction in the fine mode aerosol was around 11%. The aerosol back scatter profiles derived from Micro Pulse Lidar indicate a clear airmass subsidence on the days with higher aerosol optical depths and near surface mass fraction. A comparison of the temporal variation of the aerosol properties at Visakhapatnam with the MODIS derived aerosol optical depth along the cruise locations indicates a resemblance in the temporal variation suggesting that the aerosol transport from the eastern coastal regions of peninsular India could significantly affect the aerosol optical properties at the near coastal oceanic regions and that the affect significantly reduced at the farther regions.

    • Large scale features and assessment of spatial scale correspondence between TMPA and IMD rainfall datasets over Indian landmass

      R Uma T V Lakshmi Kumar M S Narayanan M Rajeevan Jyoti Bhate K Niranjan Kumar

      More Details Abstract Fulltext PDF

      Daily rainfall datasets of 10 years (1998–2007) of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (∼0.9) when the study was confined to specific wet and dry spells each of about 5–8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30–50 days and 10–20 days), to be ranging respectively between ∼30–40% and 5–10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by ∼110 mm during southwest monsoon and overestimating by ∼150 mm during northeast monsoon season.

      At high spatio-temporal scales, viz., 1° × 1° grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5° × 5° average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

    • Special Issue - "Call for papers"

      Posted on July 18, 2023
      AI/ML in Earth System Sciences

      Click here for more information

      Extreme weather events with special emphasis on lightning prediction, observation, and monitoring over India

      Click here for more information

© 2023-2024 Indian Academy of Sciences, Bengaluru.