• K D Singh

      Articles written in Journal of Earth System Science

    • A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India

      D Ramakrishnan M Nithya K D Singh Rishikesh Bharti

      More Details Abstract Fulltext PDF

      This work illustrates the efficiency of field spectroscopy for rapid identification of minerals in ore body, alteration zone and host rocks. The adopted procedure involves collection of field spectra, their processing for noise, spectral matching and spectral un-mixing with selected library end-members. Average weighted spectral similarity and effective peak matching techniques were used to draw end-members from library. Constrained linear mixture modelling technique was used to convolve end-member spectra. Linear mixture model was optimized based on root mean square error between field- and modelled-spectra. Estimated minerals and their abundances were subsequently compared with conventional procedures such as petrography, X-ray diffraction and X-ray fluorescence for accuracy assessment. The mineralized zone is found to contain azurite, galena, chalcopyrite, bornite, molybdenite, marcacite, gahnite, hematite, goethite, anglesite and malachite. The alteration zone contains chlorite, kaolinite, actinolite and mica. These mineral assemblages correlate well with the petrographic measurements ($R^2 = 0.89$). Subsequently, the bulk chemistry of field samples was compared with spectroscopically derived cumulative weighted mineral chemistry and found to correlate well ($R^2 = 0.91–0.98$) at excellent statistical significance levels (90–99%). From this study, it is evident that field spectroscopy can be effectively used for rapid mineral identification and abundance estimation.

    • Compositional diversity of near-, far-side transitory zone around Naonobu, Webb and Sinus Successus craters: Inferences from Chandrayaan-1 Moon Mineralogy Mapper (M3) data

      Rishikesh Bharti D Ramakrishnan K D Singh

      More Details Abstract Fulltext PDF

      This study investigated the potential of Moon Mineralogy Mapper (M3) data for studying compositional variation in the near-, far-side transition zone of the lunar surface. For this purpose, the radiance values of the M3 data were corrected for illumination and emission related effects and converted to apparent reflectance. Dimensionality of the calibrated reflectance image cube was reduced using Independent Component Analysis (ICA) and endmembers were extracted by using Pixel Purity Index (PPI) algorithm. The selected endmembers were linearly unmixed and resolved for mineralogy using United States Geological Survey (USGS) library spectra of minerals. These mineralogically resolved endmembers were used to map the compositional variability within, and outside craters using Spectral Angle Mapper (SAM) algorithm. Cross validation for certain litho types was attempted using band ratios like Optical Maturity (OMAT), Color Ratio Composite and Integrated Band Depth ratio (IBD). The identified lithologies for highland and basin areas match well with published works and strongly support depth related magmatic differentiation. Prevalence of pigeonite-basalt, pigeonite-norite and pyroxenite in crater peaks and floors are unique to the investigated area and are attributed to local, lateral compositional variability in magma composition due to pressure, temperature, and rate of cooling.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.