Jyotiranjan S Ray
Articles written in Journal of Earth System Science
Volume 110 Issue 3 September 2001 pp 185-190
40Ar-39Ar age of carbonatite-alkaline magmatism in Sung valley, Meghalaya, India
Jyotiranjan S Ray Kanchan Pande
40Ar-39Ar analyses of one alkali pyroxenite whole rock and two phlogopite separates of calcite carbonatites from the Sung Valley carbonatite-alkaline complex, which is believed to be a part of the Rajmahal-Bengal-Sylhet (RBS) flood basalt province, yielded indistinguishable plateau ages of 108.8 ± 2.0Ma, 106.4 ± 1.3Ma and 107.5 ± 1.4Ma, respectively. The weighted mean of these ages, 107.2 ± 0.8 Ma, is the time of emplacement of this complex. This implies that Sung Valley complex and probably other such complexes in the Assam-Meghalaya Plateau postdate the main flood basalt event (i.e., the eruption of tholeiites) in the RBS province by ∼10Ma.
Volume 115 Issue 1 February 2006 pp 1-2
Volume 115 Issue 1 February 2006 pp 149-160
Age of the Vindhyan Supergroup: A review of recent findings
The Vindhyan Supergroup of India is one of the largest and thickest sedimentary successions of the world. Deposited in an intra-cratonic basin, it is composed mostly of shallow marine deposits. It is believed to have recorded a substantial portion of Proterozoic time and therefore, likely to contain valuable information on the evolution of the atmosphere, climate, and life on our planet. It also contains some of the most disputed fossils of earliest animal life. Despite their importance, the absolute age of these rocks had remained unknown until recently. In this work I evaluate all the recent chronological information and discuss their implications. From the present findings it appears that the issues surrounding the age of the Lower Vindhyans in the Son valley are now resolved, whereas problems with the age of the Upper Vindhyans and that with the stratigraphic correlations remain to be answered.
Volume 129 All articles Published: 1 January 2020 Article ID 0015 Research Article
The Palaeogene record of Himalayan erosion in the Andaman Basin
NEERAJ AWASTHI JYOTIRANJAN S RAY
The Himalayan orogeny has been recognized as one of the most important Cenozoic events that shaped the geography, climate and ocean chemistry of our planet. The erosion in the Himalayas is believed to have played a critical role in crustal deformation and changes in the chemistry of the ocean water since the Eocene. In spite of the fact that the orogeny began after India–Asia collision at $59\pm1$ Ma, the record of its earliest erosional history is meagre. In an attempt to fill this gap in the knowledge, we studied temporal changes in provenance of Paleogene–Neogene siliciclastic sediments of the Andaman Islands, deposited in a trench-forearc basin in the Bay of Bengal. Using Sr-isotope stratigraphy and tephrochronology we determined the timings of depositions of various lithologies. Sediment sources were identified using trace element and isotopic (Sr–Nd) fingerprinting. Results of our study suggest that the Myanmar Arc had remained a constant sediment source to the Andaman basin during 55–5 Ma, whereas the basin started receivingsignificant continental sands input after 35 Ma that increased with time until $\sim$20 Ma. Geochemical provenance of these sands suggests their derivation from Precambrian crustal sources in the Himalaya, which probably is an outcome of higher erosional rates subsequent to a rapid exhumation of the orogen in the late Eocene and efficient sediment transport through the palaeo-channels of the rivers Brahmaputra and Ganga under optimal conditions of the Indian monsoon. Such a scenario is consistent with the idea that the Himalayan sediment input is the cause for the conspicuous rise in marine $^{87}\rm{Sr}/^{86}\rm{Sr}$ since $\sim$40 Ma. Our data also suggest that since the Miocene, sediment sources in the Indo-Burman Ranges and the Myanmar arc have become the major contributors to the Andaman Basin through the Irrawaddy river system.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.