• Javed N Malik

      Articles written in Journal of Earth System Science

    • Evidence of paleoearthquakes from trench investigations across Pinjore Garden fault in Pinjore Dun, NW Himalaya

      Javed N Malik George Mathew

      More Details Abstract Fulltext PDF

      The Pinjore Garden Fault (PGF) striking NNW-SSE is now considered one of the active faults displacing the younger Quaternary surfaces in the piggyback basin of Pinjore Dun. This has displaced the older Kalka and Pinjore surfaces, along with the other younger surfaces giving rise to WSW and SW-facing fault scarps with heights ranging from 2 to 16 m. The PGF represents a younger branch of the Main Boundary Thrust (MBT) system. An ~ 4m wide trench excavated across the PGF has revealed displacement of younger Quaternary deposits along a low angle thrust fault. Either side of the trench-walls reveals contrasting slip-related deformation of lithounits. The northern wall shows displacement of lithounits along a low-angle thrust fault, while the southern wall shows well-developed fault-related folding of thick sand unit. The sudden change in the deformational features on the southern wall is an evidence of the changing fault geometry within a short distance. Out of five prominent lithounits identified in the trench, the lower four units show displacement along a single fault. The basal unit ‘A’ shows maximum displacement of aboutTo = 2.85 m, unit B = 1.8 m and unit C = 1.45 m. The displacement measured between the sedimentary units and retro-deformation of trench log suggests that at least two earthquake events have occurred along the PGF. The units A and D mark the event horizons. Considering the average amount of displacement during one single event (2 m) and the minimum length of the fault trace (~ 45 km), the behaviour of PGF seems similar to that of the Himalayan Frontal Fault (HFF) and appears capable of producing large magnitude earthquakes.

    • Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India

      Michio Morino Javed N Malik Prashant Mishra Chandrashekhar Bhuiyan Fumio Kaneko

      More Details Abstract Fulltext PDF

      Several new active fault traces were identified along Katrol Hill Fault (KHF).A new fault (named as Bhuj Fault,BF)that extends into the Bhuj Plain was also identified.These fault traces were identified based on satellite photo interpretation and field survey.Trenches were excavated to identify the paleoseismic events,pattern of faulting and the nature of deformation.New active fault traces were recognized about 1 km north of the topographic boundary between the Katrol Hill and the plain area.The fault exposure along the left bank of Khari River with 10 m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault.The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village.

      Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2,and F3.These fault strands displaced the older terrace deposits comprising Sand,Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel,sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.