• J N Goswami

      Articles written in Journal of Earth System Science

    • Windows to early solar system processes: Refractory inclusions in the CV and CM chondrites

      J D Macdougall J N Goswami

      More Details Abstract Fulltext PDF

      The refractory element-enriched inclusions found in the carbonaceous meteorites give cosmochemists a fascinating glimpse at processes which occurred near the birth of the solar system. Although many complications must still be unravelled, the weight of the available evidence indicates that many of these objects condensed directly from the solar nebula, and have remained relatively unaltered up to the present. Their mineralogical and chemical compositions therefore reflect conditions at the time of their formation. The most thoroughly studied of the inclusions are those from the Allende CV meteorite. These, in general, have mineral assemblages similar to those which would be predicted for nebular condensation. The mineralogical agreement is not strict, however, and also the bulk chemical compositions sometimes deviate markedly from expected trends. More work is required to understand these differences. A range of isotopic anomalies in many elements has been found, in these inclusions. Some of these suggest an extra-solar system origin for a part of the material in the inclusions. Although much less work has been done on the inclusions in the CM meteorites, current data indicate that they will prove to be at least as valuable as those from Allende. Chemical data show that some inclusions in the Murchison meteorite are more refractory than the most refractory Allende inclusions. Isotopic anomalies, including25Mg excesses and oxygen-16 enriched oxygen, indicate that, in spite of chemical and mineralogical differences, the Murchison and Allende inclusions contain common isotopic components, and are probably contemporaneous.

    • Irradiation history and atmospheric ablation of meteorites: Results from cosmic ray track studies

      J N Goswami

      More Details Abstract Fulltext PDF

      The dominant component of nuclear tracks observed in meteoritic minerals poor in uranium is produced by cosmic ray very heavy (vh:Z>20) nuclei. Studies of cosmic ray tracks and other cosmogenic effects in meteorites give us information on the irradiation history of these meteorites and enable us to estimate the extent of ablation during their atmospheric transit, and hence their pre-atmospheric masses. In a specific type of meteorite, known asgas-rich meteorite, one finds individual grains and xenoliths that have received solar flare and galactic cosmic ray irradiation prior to the formation of these meteorites. Detailed studies of these exotic components give insight into the accretionary processes occurring in the early history of the solar system. Some of the important results obtained from such studies and their implications to meteoritics are summarized.

    • Irradiation history and atmospheric ablation of meteorites: Results from cosmic ray track studies

      J N Goswami

      More Details Abstract Fulltext PDF

      The dominant component of nuclear tracks observed in meteoritic minerals poor in uranium is produced by cosmic ray very heavy (vh:Z>20) nuclei. Studies of cosmic ray tracks and other cosmogenic effects in meteorites give us information on the irradiation history of these meteorites and enable us to estimate the extent of ablation during their atmospheric transit, and hence their pre-atmospheric masses. In a specific type of meteorite, known asgas-rich meteorite, one finds individual grains and xenoliths that have received solar flare and galactic cosmic ray irradiation prior to the formation of these meteorites. Detailed studies of these exotic components give insight into the accretionary processes occurring in the early history of the solar system. Some of the important results obtained from such studies and their implications to meteoritics are summarized.

    • Isotopic analysis of early solar system objects by an ion microprobe: Parametric studies and initial results

      J N Goswami G Srinivasan

      More Details Abstract Fulltext PDF

      Magnesium, potassium and calcium isotope compositions in terrestrial samples and refractory phases from primitive meteorites are determined using an ion microprobe. A thorough investigation of the different instrument parameters is carried out to ensure that conditions necessary for high mass resolution and high precision isotopic studies are adequately satisfied. The instrument can be tuned to achieve mass resolution (M/ΔM) of up to 10,000 (M≤60); it has a very good dynamic stability (ΔB/B≤10 ppm over durations of ≤40 minutes) and the counting system has an effective dead-time of ≤25 nsec and a dynamic background of ≤0·01 c/s. Reproducibility and precision of isotopic measurements are checked by analyzing magnesium and titanium isotopic compositions in terrestrial standards and isotopically doped silicate glasses. A precision of 2‰ (2σm) was achieved during magnesium isotopic analysis in samples with low Mg content (200 ppm). Results from studies of magnesium and potassium isotopic compositions in several Ca−Al-rich refractory inclusions (CAIs) from the primitive meteorites Efremovka and Grosnaja, representing some of the early solar system objects, are presented. The well-behaved Mg−Al isotopic systematics confirm the pristine nature of the Efremovka CAIs inferred earlier from petrographic and trace element studies. The Grosnaja CAIs that have experienced secondary alterations show disturbed magnesium isotopic systematics. Observation of excess26Mg in several of the analyzed CAIs confirms the presence of the now extinct26Al (t1/2=7×105 years) in the solar nebula at the time of CAI formation. Our data also suggest a relatively uniform distribution of26Al in the solar nebula. Several Efremovka CAIs with excess26Mg also have excess41K resulting from the decay of41Ca (t1/2≃105 years). This observation constrains the time interval between cessation of nucleosynthetic input to the solar nebula and the formation of some of the first solar system solids (CAIs) to less than a million years.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.