Articles written in Journal of Earth System Science

    • Petrogenesis of the Late Archean Kanara Batholith of the Western Dharwar Craton: Evidence for mid-deep crustal recycling of the Archean felsic crust


      More Details Abstract Fulltext PDF

      Kanara Batholith is an intrusive granitoid pluton into the basement biotite-gneisses and the supracrustal rocks of the Western Ghats Belt (WGB). The pluton is situated in the western margin of the Western Dharwar Craton (WDC). These granitoids are classified as granodiorite and granite based on their field and petrographic characteristics. Based on the abundance and presence of alkali-feldspar phenocrysts, the granites are further classified as porphyritic and non-porphyritic granites. Biotite$\pm$ amphibole is a dominant mafic mineral phase in the granodiorites, whereas amphiboles are absent in the studied granites. Textural coarsening has played a significant role in the growth of the mineral crystals within the studied granitoids. Thermobarometric study suggests that the granites were emplaced and crystallized at pressures between 4.32 and 4.92 kbar and temperatures between 548$\pm$ 15$^{\circ}$ and 715$\pm$ 15$^{\circ}$C. Further, it is estimated that the granitoid magma intruded the gneissic country rocks and the supracrustal sequences of the WGB corresponding to a depth of ${\sim}$15 to 17 km. Geochemical evidence indicates that the source magmas of the studied granitoids were derived from the interaction between (i) a melt derived from the partial melting of the basement biotite gneisses and (ii) a melt derived from the partial melting of the early Archean metasedimentary rocks that form enclaves within the basement biotite gneisses. These two source magmas have interacted subsequently to yield a hybrid felsic magma, resulting in the Kanara Batholith formation. The interaction between the melts took place at shallow to mid-crustal levels at pressures $\lesssim$ 5 kbar before the crystallization began.


      $\bullet$ Kanara Batholiths are the products of hybrid magmatism.

      $\bullet$ They were emplaced in the shallow to mid-crustal levels.

      $\bullet$ Mid-deep crustal recycling of the Paleoarchean crust in the Dharwar Foreland region resulted in the formation of the source magmas for these granitoids.

      $\bullet$ The studied granitoids contains multiple phases of magma injections in to the basement biotite-gneisses and the Western Ghats greenstone belt.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

    • Special Issue - "Call for papers"

      Posted on July 18, 2023
      AI/ML in Earth System Sciences

      Click here for more information

      Extreme weather events with special emphasis on lightning prediction, observation, and monitoring over India

      Click here for more information

© 2023-2024 Indian Academy of Sciences, Bengaluru.