• J R Kayal

      Articles written in Journal of Earth System Science

    • Simultaneous inversion of the aftershock data of the 1993 Killari earthquake in Peninsular India and its seismotectonic implications

      S Mukhopadhyay J R Kayal K N Khattri B K Pradhan

      More Details Abstract Fulltext PDF

      The aftershock sequence of the September 30th, 1993 Killari earthquake in the Latur district of Maharashtra state, India, recorded by 41 temporary seismograph stations are used for estimating 3-D velocity structure in the epicentral area. The local earthquake tomography (LET) method of Thurber (1983) is used. About 1500P and 1200S wave travel-times are inverted. TheP andS wave velocities as well asVP/VSratio vary more rapidly in the vertical as well as in the horizontal directions in the source region compared to the adjacent areas. The main shock hypocentre is located at the junction of a high velocity and a low velocity zone, representing a fault zone at 6–7 km depth. The estimated average errors ofP velocity andVP/VSratio are ±0.07 km/s and ±0.016, respectively. The best resolution ofP and S-wave velocities is obtained in the aftershock zone. The 3-D velocity structure and precise locations of the aftershocks suggest a ‘stationary concept’ of the Killari earthquake sequence.

    • Study of the epicentral trends and depth sections for aftershocks of the 26th january 2001, Bhuj earthquake in Western India

      S G Gaonkar B V Srirama S R Samaddar D V Punekar Sagina Ram Reena De J R Kayal

      More Details Abstract Fulltext PDF

      The Geological Survey of India (GSI) established a twelve-station temporary microearthquake (MEQ) network to monitor the aftershocks in the epicenter area of the Bhuj earthquake (Mw7.5) of 26th January 2001. The main shock occurred in the Kutch rift basin with the epicenter to the north of Bhachao village, at an estimated depth of 25 km (IMD). About 3000 aftershocks (Md ≥ 1.0), were recorded by the GSI network over a monitoring period of about two and half months from 29th January 2001 to 15th April 2001. About 800 aftershocks (Md ≥ 2.0) are located in this study. The epicenters are clustered in an area 60 km × 30 km, between 23.3‡N and 23.6‡N and 70‡E and 70.6‡E. The main shock epicenter is also located within this zone.

      Two major aftershock trends are observed; one in the NE direction and other in the NW direction. Out of these two trends, the NE trend was more pronounced with depth. The major NE-SW trend is parallel to the Anjar-Rapar lineament. The other trend along NW-SE is parallel to the Bhachao lineament. The aftershocks at a shallower depth (<10km) are aligned only along the NW-SE direction. The depth slice at 10 km to 20 km shows both the NE-SW trend and the NW-SE trend. At greater depth (20 km–38 km) the NE-SW trend becomes more predominant. This observation suggests that the major rupture of the main shock took place at a depth level more than 20 km; it propagated along the NE-SW direction, and a conjugate rupture followed the NW-SE direction.

      A N-S depth section of the aftershocks shows that some aftershocks are clustered at shallower depth ≤ 10 km, but intense activity is observed at 15–38 km depth. There is almost an aseismic layer at 10–15 km depth. The activity is sparse below 38 km. The estimated depth of the main shock at 25 km is consistent with the cluster of maximum number of the aftershocks at 20–38 km. A NW-SE depth section of the aftershocks, perpendicular to the major NE-SW trend, indicates a SE dipping plane and a NE-SW depth section across the NW-SE trend shows a SW dipping plane.

      The epicentral map of the stronger aftershocksM ≥ 4.0 shows a prominent NE trend. Stronger aftershocks have followed the major rupture trend of the main shock. The depth section of these stronger aftershocks reveals that it occurred in the depth range of 20 to 38 km, and corroborates with a south dipping seismogenic plane.

    • Fault plane solutions of the january 26th, 2001 bhuj earthquake sequence

      Reena De S G Gaonkar B V Srirama Sagina Ram J R Kayal

      More Details Abstract Fulltext PDF

      A 12-station temporary microearthquake network was established by the Geological Survey of India for aftershock monitoring of the January 26th, 2001 Bhuj earthquake (Mw 7.6) in the Kutch district of Gujarat state, western India. The epicentres of the aftershocks show two major trends: one in the NE direction and the other in the NW direction. Fault-plane solutions of the best-located and selected cluster of events that occurred along the NE trend, at a depth of 15–38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth <10 km, on the other hand, show reverse faulting with right-lateral strike-slip motion, and the mid crustal and lower crustal aftershocks, at a depth of 15–38 km, show pure reverse faulting as well as reverse faulting with right-lateral and left-lateral strike-slip motions; these solutions are not comparable with the main-shock solution. It is inferred that the intersection of two faults has been the source area for stress concentration to generate the main shock and the aftershocks.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.