Hakan Ersoy
Articles written in Journal of Earth System Science
Volume 122 Issue 6 December 2013 pp 1545-1555
Hakan Ersoy Melek Betül Karsli Seda Çellek Bilgehan Kul Idris Baykan Robert L Parsons
Costly and time consuming testing techniques and the difficulties in providing undisturbed samples for these tests have led researchers to estimate strength parameters of soils with simple index tests. However, the paper focuses on estimation of strength parameters of soils as a function of the index properties. Analytical hierarchy process and multiple regression analysis based methodology were performed on datasets obtained from soil tests on 41 samples in Tertiary volcanic regolith. While the hierarchy model focused on determining the most important index properties affecting on strength parameters, regression analysis established meaningful relationships between strength parameters and index properties. The negative polynomial correlations between the friction angle and plasticity properties, and the positive exponential relations between the cohesion and plasticity properties were determined. These relations are characterized by a regression coefficient of 0.80. However, Terzaghi bearing capacity formulas were used to test the model. It is important to see whether there is any statistically significant relation between the calculated and the observed bearing capacity values for model testing. Based on the model, the positive linear correlation characterized by the regression coefficient of 0.86 were determined between bearing capacity values obtained by direct and indirect methods.
Volume 129 All articles Published: 5 March 2020 Article ID 0082 Research Article
2D and 3D numerical simulations of a reinforced landslide: A case study in NE Turkey
HAKAN ERSOY AYBERK KAYA ZEKAI ANGıN SERHAT DAG
The purpose of this study is to investigate the slope stability problem that occurred in the Ulubey (NE Turkey) during the construction of a hospital building and to propose a reliable support design. The borehole applications, geophysical surveys, groundwater measurements, soil sampling and SPT were performed to establish the geotechnical model. Based on the site characterization investigations, three units were defined as sliding material, residual regolith and volcanic rocks. Strength parameters of the sliding and residual soil materials were obtained from the back analysis. The long-term performance of the double row-bore piles was proposed as support measures and was controlled using the limit equilibrium (LE) and finite element (FEM) analyses methods under a dynamic condition. The 2D-LE and 2D-FEM analysis results showed that the suggested support design is reliable for long-term stability. The locations of the critical shear surface determined by 2D methods were almost the same as those obtained from 3D-FEM method and the total displacement values obtained from the 3D-FEM model were smaller thanthose obtained from the 2D-FEM model. These results indicated that 2D and 3D stability analyses were sufficient to evaluate the stability of uncomplex slope geometry when a reliable design with simple solutions was required.
Volume 129, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.