• G K SEN

      Articles written in Journal of Earth System Science

    • Understanding the turbulent structure of the atmospheric boundary layer: A diagnostic approach

      M Chatterjee G K Sen D K Sinha

      More Details Abstract Fulltext PDF

      In this paper, we have attempted a diagnostic study of the turbulence characteristics of the ABL by means of two one-dimensional models. The first model uses a first order non-local closure, based on the Transilient Turbulence Theory, for parameterizing turbulent fluxes. while the second model uses second order local closure for parameterizing these. The models have been applied to conduct case studies using the Kytoon data taken at Kharagpur, during 17th–21st June, 1990, as part of the MONTBLEX programme.

      Our findings bring out various interesting features regarding the non-local and local turbulent statistics such as kinematic fluxes, turbulence kinetic energy, vertical velocity variance, the contribution of the eddies of various sizes to the fluxes at different level and the mixing lengths. The one-dimensional anisotropy of the turbulent eddies has been revealed by the findings from the transilient model. The vertical variation of the turbulence kinetic energy, as computed directly by the second order model, is found to be strongly correlated with the vertical velocity variance. In particular, for stably stratified boundary layers, identification of two distinct zones of the turbulence kinetic energy and corresponding vertical velocity maxima is possible, which has been interpreted as positive evidence of patchy turbulence in the boundary layer.

    • Variation of salinity in the Sundarbans Estuarine System during the Equinoctial Spring tidal phase of March 2011

      MEENAKSHI CHATTERJEE D SHANKAR V VIJITH G K SEN D SUNDAR G S MICHAEL P AMOL ABHISEK CHATTERJEE P SANYAL SIDDHARTHA CHATTERJEE ANWESHA BASU SARANYA CHAKRABORTI SURJA KANTA MISHRA K SUPRIT DEBABRATA MUKHERJEE A MUKHERJEE SOUMYA MUKHOPADHYAY GOPAL MONDAL ARAVIND KALLA MADHUMITA DAS

      More Details Abstract Fulltext PDF

      The Sundarbans Estuarine System (SES), comprising the southernmost part of the Indian portion of the Ganga-Brahmaputra delta bordering the Bay of Bengal, is India’s largest monsoonal, macro-tidal, delta-front estuarine system. The Sundarbans Estuarine Programme (SEP), covering six semi-diurnal tidal cycles during 18–21 March 2011 (the Equinoctial Spring Phase), was the first comprehensive observational programme in the SES. The 30 observation stations, spread over more than 3600 km2km2, covered the seven inner estuaries of the SES: the Saptamukhi, Thakuran, Matla, Bidya, Gomdi, Harinbhanga, and Raimangal. At all stations or time-series locations (TSLs), the water level was measured every 15 min and water samples were collected every hour for estimating salinity. We report the observed spatio-temporal variations of salinity in this paper. The mean salinity over the six tidal cycles decreased upstream and the mean range of salinity over a tidal cycle increased upstream. In addition to this along-channel variation, the mean salinity also varied zonally across the SES. Salinity was lowest in the eastern SES, with the lowest value occurring at the TSLs on the Raimangal. Though higher than at the Raimangal TSLs, the mean salinity was also low at Mahendranagar, the westernmost TSL located on the West Gulley of the Saptamukhi. Salinity tended to be higher in the central part of the SES. CTD (conductivity–temperature–depth) measurements at three stations on the Matla show a well-mixed profile. Only the Raimangal has a freshwater source at its head. Therefore, the upstream decrease of salinity in the SES is likely to be the effect of the preceding summer monsoon, which would have freshened the estuary, and the ingress of salt from the seaward end due to the tide following the cessation of of the monsoon rains. The freshwater inflow from the Raimangal leads to the lowest salinities occurring in the eastern SES. The lower salinity in the western SES also suggests inflow from the Hoogly estuary, whose freshwater source is regulated via the Farakka Barrage. At 20 of the 30 TSLs, the salinity varied semi-diurnally, like the water level, and the maximum (minimum) salinity tended to occur at or around high (low) water. The temporal variation was more complex at the other 10 TSLs. Even at the TSLs at which a tidal stand exceeding 75 min was seen in the water level, the salinity oscillated with a semi-diurnal period. Thus, the salinity variation was unaffected by the stand of the tide that has been reported from the SES.

      $\bf{Highlights}$

      $\bullet$ Comprehensive description of salinity variability in the Sundarbans Estuarine System (SES)

      $\bullet$ Semi-diurnal variation seen at a majority of the stations and the estuaries are well-mixed

      $\bullet$ Mean salinity decreases upstream and is lower in the eastern and western SES

      $\bullet$ The upstream decrease is due to the preceding monsoon and the tidal ingress of salt

      $\bullet$ Direct (indirect) inflow from the Ganga (Hoogly) lowers salinity in the eastern (western) SES

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.