Articles written in Journal of Earth System Science

    • A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement

      Ninad R Bondre Raymond A Duraiswami Gauri Dole

      More Details Abstract Fulltext PDF

      The nature and style of emplacement of Continental Flood Basalt (CFB) lava flows has been a matter of great interest as well as considerable controversy in the recent past. However, even a cursory review of published literature reveals that the Columbia River Basalt Group (CRBG) and Hawaiian volcanoes provide most of the data relevant to this topic. It is interesting to note, however, that the CRBG lava flows and their palaeotopographic control is atypical of other CFB provinces in the world. In this paper, we first present a short overview of important studies pertaining to the emplacement of flood basalt flows. We then briefly review the morphology of lava flows from the Deccan Volcanic Province (DVP) and the Columbia-Oregon Plateau flood basalts. The review underscores the existence of significant variations in lava flow morphology between different provinces, and even within the same province. It is quite likely that there were more than one way of emplacing the voluminous and extensive CFB lava flows. We argue that the establishment of general models of emplacement must be based on a comprehensive documentation of lava flow morphology from all CFB provinces.

    • Possible lava tube system in a hummocky lava flow at Daund, western Deccan Volcanic Province, India

      Raymond A Duraiswami Ninad R Bondre Gauri Dole

      More Details Abstract Fulltext PDF

      A hummocky flow characterised by the presence of toes, lobes, tumuli and possible lava tube system is exposed near Daund, western Deccan Volcanic Province, India. The lava tube system is exposed as several exhumed outcrops and is composed of complex branching and discontinuous segments. The roof of the lava tube has collapsed but original lava tube walls and fragments of the tube roof are seen at numerous places along the tube. At some places the tube walls exhibit a single layer of lava lining, whereas, at other places it shows an additional layer characterised by smooth surface and polygonal cracks. The presence of a branching and meandering lava tube system in the Daund flow, which represents the terminal parts of Thakurwadi Formation, shows that the hummocky flow developed at a low local volumetric flow rate. This tube system developed in the thinner parts of the flow sequence; and tumuli developed in areas where the tube clogged temporarily in the sluggish flow.

    • Multi-tiered, disrupted crust of a sheet lava flow from the Diveghat Formation of Deccan Traps: Implications on emplacement mechanisms


      More Details Abstract Fulltext PDF

      The crust is a vesicular layer that caps the compact core of sheet lava flows. We describe for the first time, a crust composed of multiple layers (each distinguished by a chilled glassy rind) from the Diveghat Formation in the western Deccan Volcanic Province. The multiple layers of crust developed over a single compact core of a single sheet lava flow, are shown to have been sequentially deformed in multiple phases. This is interpreted to have resulted from the endogenous emplacement of lava in successive pulses (rather than as a continuous stream) during the extrusion of the sheet lava flow. This model has several implications on the mechanism of emplacement of sheet flows in continental flood basalt provinces.

    • Geometry and age of a mafic dyke emplaced along the Bhetkheda–Mohana Lineament, Central Narmada valley, Deccan Volcanic Province


      More Details Abstract Fulltext PDF

      The Bhetkheda–Mohana Lineament is traced as a continuous lineament across nearly 100 km in the central Narmada valley across the Deccan Trap basalts and their basement of Proterozoic sediments. While a major length of this lineament is occupied by a basaltic dyke, there are segments where the dyke is completely absent, and the lineament is represented by a regional fracture/shear/fault zone. At its eastern extremity, this dyke is exposed intruding along the axis of a synclinorium of the Vindhyan Supergroup sediments, as a 4-km long string of hillocks of picturesque columnar jointed basalt. It has the presence of ignimbrites and a thin basaltic flow (resting on the sediments) surrounding it, suggesting the presence of an eruptive vent. This dyke intrudes the Mandleshwar Formation lava flows dated at 67–66 Ma and is associated with the Narmada dyke swarm. It has given $^{40}$Ar/$^{39}$Ar age of 66.6±0.5 Ma. Its chemical characters conform to those of the basaltic flows of the Malwa Traps, indicating a common source and emplacement history. This is a unique example of a dyke that was emplaced along a preexisting fracture zone cutting through the Proterozoic basement as well as the Deccan Trap lavas, with a distinct petrological identity with the host lava flows, indicating its feeder relation. It endorses the comparison of the Icelandic mode of fissure-fed flood basalts with the eruptive history of the Deccan Volcanic Province.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

    • Special Issue - "Call for papers"

      Posted on July 18, 2023
      AI/ML in Earth System Sciences

      Click here for more information

      Extreme weather events with special emphasis on lightning prediction, observation, and monitoring over India

      Click here for more information

© 2023-2024 Indian Academy of Sciences, Bengaluru.