GAURAV CHAUHAN
Articles written in Journal of Earth System Science
Volume 125 Issue 6 August 2016 pp 1119-1138
Archana Das Falguni Bhattacharya B K Rastogi Gaurav Chauhan Mamata Ngangom M G Thakkar
Dryland rivers, dominated by short-lived, localised and highly variable flow due to discrete precipitation events, have characteristic preservation potential, which serves as suitable archives towards understanding the climate–tectonic coupling. In the present study, we have investigated the fluvial records of a major, southerly-draining river – the Rukmawati River in the dryland terrain of southern Kachchh, in western India. The sediment records along the bedrock rivers of Kachchh register imprints of the Indian summer monsoon (ISM), which is the major source of moisture to the fluvial system in western India. The Rukmawati River originates from the Katrol Hill Range in the north and flows towards the south, into the Gulf of Kachchh. The field stratigraphy, sedimentology, along with the optical chronology suggeststhat a braided-meandering system existed during 37 ka period due to an overall strengthened monsoon. A gradual decline in the monsoon strength with fluctuation facilitated the development of a braided channel system between 20 and 15 ka. A renewed phase of strengthened monsoon with seasonality after around 15 ka which persisted until around 11 ka, is implicated in the development of floodplain sequences. Two zones of relatively high bedrock uplift are identified based on the geomorphometry and morphology of the fluvial landform. These zones are located in the vicinity of the North Katrol Hill Fault (NKHF) and South Katrol Hill Fault (SKHF). Geomorphic expression of high bedrock uplift is manifested by the development of beveled bedrock prior to or around 20 ka during weak monsoon. The study suggests that the terrain in the vicinity of NKHF and SKHF is uplifting at around 0.8 and >0.3 mm/a, respectively. Simultaneously, the incision in the Rukmawati River basin, post 11 ka, is ascribed to have occurred due to lowered sea level during the LGM and early Holocene period.
Volume 129 All articles Published: 15 September 2020 Article ID 0193 Research Article
RAJ SUNIL KANDREGULA GIRISH CH KOTHYARI GAURAV CHAUHAN VASU PANCHOLI SWAMY K V ABHISHEK LAKHOTE SNEHA MISHRA THAKKAR M G
In the present study, we assess seismic hazard potential and surface deformation pattern along and across the strike of major active faults in the intra-plate Kachchh Rift Basin (KRB). Towards this, we adopted river Gradient Length Anomaly (GLA) technique, which detects recent tectonic deformation along a river profile on local and regional scales. The major deviations along the river profile can be correlated with exogenic (erosion/sedimentation/anthropogenic) and endogenic (active tectonic movement) processes. We analysed 130 river profiles for GL anomalies, over an area of ${\sim}$26,700 km$^{2}$ in the KRB to identify possible locations that have undergone active tectonic deformation associated with the fault movement. The acquired results show that the higher magnitude negative GL anomalies (uplift) are observed proximal to the fault zones. Our estimates reveal that, around 13% of the study area falls under high tectonically active zone, around 27% of the area falls under moderately active zone, while 60% of the area shows very low or negligible tectonic activity. The estimated results of the GL anomalies are compared with the existing double-difference tomograms, to understand the role of subsurface fault dynamics on the GL anomalies. Furthermore, the results of GLA are correlated with the existing results of the peak ground acceleration (PGA) values of the basin, in order to obtain the precise information regarding surface deformation and site-specific ground acceleration for accurate assessment of seismic hazard.
Volume 129, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.