D Srinivasa Sarma
Articles written in Journal of Earth System Science
Volume 127 Issue 4 June 2018 Article ID 0054
V Somasekhar S Ramanaiah D Srinivasa Sarma
Petrological and geochemical studies have been carried out on Pulivendla and Gandikota Quartzite from Chitravati Group of Cuddapah Supergroup to decipher the provenance and depositional environment. Both the units are texturally mature with sub-rounded to well-rounded and moderately to well-sorted grains. Majority of the framework grains are quartz, in the form of monocrystalline quartz, followed byfeldspars (K-feldspar and plagioclase), mica, rock fragments, heavy minerals, with minor proportion of the matrix and cement. Based on major element geochemical classification diagram, Pulivendla Quartzite is considered as quartz-arenite and arkose to sub-arkose, whereas Gandikota Quartzite falls in the field of lith-arenite and arkose to sub-arkose. Weathering indices like CIA, PIA, CIW, ICV, Th/U ratio and A–CN–K ternary diagram suggest moderate to intense chemical weathering of the source rocks of these quartzites. Whole rock geochemistry of quartzites indicate that they are primarily from the first-cycle sediments, along with some minor recycled components. Also their sources were mostly intermediate-felsicigneous rocks of Archean age. The tectonic discrimination plots, Th–Sc–Zr/10 of both these formations reflect active to passive continental margin setting. Chondrite-normalized rare earth element (REE) patterns, and various trace element ratios like Cr/Th, Th/Co, La/Sc and Th/Cr indicate dominantlyfelsic source with minor contribution from mafic source. Th/Sc ratios of Pulivendla and Gandikota Quartzite are in close proximity with average values of 2.83, 3.45 respectively, which is higher than AUCC (Th/Sc = 0.97), demonstrating that the contributions from more alkali source rocks than those that contributed to AUCC.
Volume 129 All articles Published: 1 April 2020 Article ID 0103 Research Article
S H JAFRI D SRINIVASA SARMA TAVHEED KHAN D K SINGH
The radiolarian cherts of Late Cretaceous age are reported in the Andaman-Nicobar ophiolites of Bay of Bengal, India. They are of chocolate-coloured (Type-I) and light pink-coloured (Type-II) varieties, juxtaposed and tectonically associated with phyllites, claystones and basalts and are exposed in eastern part of North Andaman Island. These cherts are composed of radiolarian tests in a fine-grained ferruginous matrix.Type-I radiolarian cherts have low $\rm{SiO}_{2}$, and high $\rm{Al_{2}O_{3}}$, $\rm{Fe_{2}O_{3}^{(T)}}$, $\rm{MgO}$, $\rm{Na_{2}O}$ and $\rm{TiO_{2}}$ and trace elements as compared to Type-II cherts. $\rm{Al–Fe–(\Sigma REE–Ce)}$ diagram of the studied cherts indicates a mixed terrigenous and volcanogenic source. $\rm{La_{N}/Ce_{N}}$ ratios (0.76–0.89 for Type-I and 0.71–0.88 for Type-II) and Ce-anomalies $\rm{(Ce/Ce^{\ast} = 1.15–1.33}$ for Type-I and 1.07–1.38 for Type-II) and other elemental ratios in these cherts suggest that they were deposited in continental margin environments. It has been suggested that the studied samples of cherts were deposited at different places, were scrapped off the subducting plate, became tectonically juxtaposed. They were obducted onto the leading edge of the Eurasian continent during the Late Cretaceous prior to the currently active Andaman–Java subduction, that was probably initiated during the Late Miocene.
Volume 130, 2021
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.