• DIPANJAN BHATTACHARJEE

      Articles written in Journal of Earth System Science

    • Size distribution of survivor clasts in pseudotachylyte and cataclasite: Implications for crushing and melting processes in seismic fault zones

      ARINDAM SARKAR DIPANJAN BHATTACHARJEE ANUPAM CHATTOPADHYAY

      More Details Abstract Fulltext PDF

      Quartz/feldspar fragment (‘clast’) sizes were measured in thin sections of three types of fault zone rocks, e.g., melting-dominated pseudotachylyte (M-Pt), crushing-dominated pseudotachylyte (C-Pt) and cataclasite (Ct), from two well-studied Precambrian shear/fault zones in the Indian craton (e.g., the Gavilgarh–Tan Shear zone in central India and the Sarwar–Junia Fault zone in western India). Logarithmic plots of clast area vs. cumulative frequency in the pseudotachylytes demonstrate a fractal clast-size distribution (c.s.d.) for the intermediate size range, whereas the finer and coarser clast size fractions clearly deviate from the fractal trend. Under-representation of the finer size clasts in the pseudotachylyte samples may be attributed to their preferential melting and removal from the clast population. The relative paucity of coarse clasts, on the other hand, is possibly due to a sampling bias against coarse clasts. The c.s.d of the cataclastic rock shows a multi-fractal character with two different slopes (i.e., lower D-value for finer clast sizes) and absence of the left-hand (finer size) fall off. This suggests less efficient crushing in the finer clast size fraction. The proportion of clasts, compared to the matrix, is very small in M-Pt, increases in C-Pt and is highest in Ct, suggesting that melting of rock/mineral fragments is a dominant process in forming M-Pt, whereas it is less significant in C-Pt, and is absent in Ct, which corroborates the microscopic observations.

      $\bf{Highlights}$

      $\bullet$ Clast size and cumulative frequency were measured in pseudotachylyte and cataclasite samples from two shear zones.

      $\bullet$ Size-frequency relationship follows a power law in melting- and crushing-dominated pseudotachylytes.

      $\bullet$ The power law does not hold good for the finest and coarsest size ranges in both types of pseudotachylytes.

      $\bullet$ For cataclasite, a multi-fractal power law relationship exists between the size and cumulative frequency of clasts.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.