• DAVID R NELSON

      Articles written in Journal of Earth System Science

    • Lunar feldspathic meteorite Dhofar 081: Petrochemical constraints on petrogenesis

      DWIJESH RAY SAUMITRA MISRA DAVID R NELSON

      More Details Abstract Fulltext PDF

      Two alternative petrogenetic models, plagioclase flotation and serial magmatism have been proposed to explain the origin of the lunar anorthositic crust, covering ${\sim}$80% of the lunar highland. In this study, we re-examine the possible relict igneous texture present in an inferred lunar highland breccia clast (area ${\sim}$1 mm$^{2}$) in the Dhofar 081 meteorite. Our new petrographic and in-situ mineral microprobe chemical data on this clast show this coarse grained (average grain size ${\sim}$0.5 mm) clast preserves relict igneous texture where subhedral, prismatic low-Ca pyroxene has intergrown with anhedral anorthitic plagioclase, suggesting its eutectic crystallization from its parent silicate magma. Absence of maskelynite and similarity of Na, K contents of plagioclase with the FAN assemblages negate the possibility of crystallization of the studied relict clast from an impact melt. The mineral-chemical data of Dhofar 081 suggest it is FAN (Ferroan anorthosite) in composition (after Warren in Annu. Rev. Earth Planet. Sci. 13:201–240, 1985). Hence, intergrown crystallization of minerals in the present relict igneous clasts and other reported FAN samples argues against a cumulate origin of the lunar anorthosite. The orthopyroxenes present in the unbrecciated portion of this meteoritic clast include bimodal low- and high-iron geochemical sub-groups. The application of orthopyroxene and plagioclase thermobarometry (after Gasparik in Contrib. Mineral. Petrol. 96:357–370, 1987) on our new microprobe data, and also two-pyroxene thermometry (after Lindsley in Am. Mineral. 68:477–493, 1983; Putirka in Rev. Mineral. Geochem. 69(1):61–120, 2008) on our new microprobe data and synthesis of literature data constrain the pressure and temperature of crystallization of lunar anorthosite parent magma close to 8 kbar and 1050$^{\circ}$C, respectively. Application of Fo–An–Q experimental phase diagram at high pressure (up to 20 kbar) negates the possibility of generation of lunar anorthosite from a lherzolite source, the parent magma of these anorthosites probably lie on or close to Fo–An join of this phase diagram close to the spinel field.

      $\bf{Highlights}$

      $\bullet$ Lunar anorthositic meteorite represents the global highland crust of Moon.

      $\bullet$ Relict igneous clast of lunar anorthositic meteorite shows intergrown texture vis-a-vis eutectic crystallisation.

      $\bullet$ Pressure and temperature of crystallisation of parent magma close to 8 kbar and 1050$^{\circ}$C.

      $\bullet$ Serial magmatism is consistent to explain the textural and mineral-chemical characters and vis-à-vis petrogenesis of lunar anorthosite.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.