• C B S Dutt

      Articles written in Journal of Earth System Science

    • Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview

      K Krishna Moorthy S K Satheesh S Suresh Babu C B S Dutt

      More Details Abstract Fulltext PDF

      During March–May 2006, an extensive, multi-institution, multi-instrument, and multi-platform integrated field experiment ‘Integrated Campaign for Aerosols, gases and Radiation Budget’ (ICARB) was carried out under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). The objective of this largest and most exhaustive field campaign, ever conducted in the Indian region, was to characterize the physico-chemical properties and radiative effects of atmospheric aerosols and trace gases over the Indian landmass and the adjoining oceanic regions of the Arabian Sea, northern Indian Ocean, and Bay of Bengal through intensive, simultaneous observations. A network of ground-based observatories (over the mainland and islands), a dedicated ship cruise over the oceanic regions using a fully equipped research vessel, the Sagar Kanya, and altitude profiling over selected regions using an instrumented aircraft and balloonsondes formed the three segments of this integrated experiment, which were carried out in tandem. This paper presents an overview of the ICARB field experiment, the database generated, and some of its interesting outcomes though these are preliminary in nature.

      The ICARB has revealed significant spatio-temporal heterogeneity in most of the aerosol characteristics both over land and ocean. Observed aerosol loading and optical depths were comparable to or in certain regions, a little lower than those reported in some of the earlier campaigns for these regions. The preliminary results indicate:

      low (> 0.2) aerosol optical depths (AOD) over most part of the Arabian Sea, except two pockets; one off Mangalore and the other, less intense, in the central Arabian Sea at ∼18° N latitude;

      High ˚Angström exponent in the southern Arabian Sea signifying steep AOD spectra and higher abundance of accumulation mode particles in the southern Arabian Sea and off Mangalore;

      Remarkably low ˚Angström exponents signifying increased concentration of coarse mode aerosols and high columnar abundance in the northern Arabian Sea;

      Altitude profiles from aircraft showed a steady BC level up to 3 km altitude with structures which were associated with inversions in the atmospheric boundary layer (ABL);

      A surprisingly large increase in the BC mass fraction with altitude;

      Presence of a convectively mixed layer extending up to about 1 km over the Arabian Sea and Bay of Bengal;

      A spatial off shore extent of > 100 km for the anthropogenic impact at the coast; and

      Advection of aerosols, through airmass trajectories, from west Asia and NW arid regions of India leading to formation of elevated aerosol layers extending as far as 400 km off the east coast.

    • Aircraft measurements of aerosol black carbon from a coastal location in the north-east part of peninsular India during ICARB

      S Suresh Babu S K Satheesh K Krishna Moorthy C B S Dutt Vijayakumar S Nair Denny P Alappattu P K Kunhikrishnan

      More Details Abstract Fulltext PDF

      During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) over India, high-resolution airborne measurements of the altitude profiles of the mass concentrations (MB) of aerosol black carbon (BC) were made off Bhubaneswar (BBR, 85.82°E, 20.25°N), over northwest Bay of Bengal, in the altitude region upto 3 km. Such high-resolution measurements of altitude profiles of aerosols are done for the first time over India. The profiles showed a near-steady vertical distribution of MB modulated with two small peaks, one at 800m and the other at ∼2000m. High resolution GPS (Global Positioning System) sonde (Vaisala) measurements around the same region onboard the research vessel Sagar Kanya (around the same time of the aircraft sortie) revealed two convectively well mixed layers, one from ground to ∼700m with an inversion at the top and the other extends from 1200m to ∼2000m with a second inversion at ∼2200m and a convectively stable region in the altitude range 700–1200m. The observed peaks in the MB profile are found to be associated with these temperature inversions. In addition, long-range transport from the Indo- Gangetic Plain (IGP) and deserts lying further to the west also influence the vertical profile of BC. Latitudinal variation of MB showed a remarkable land ocean contrast at the 500m altitude (within the well mixed region) with remarkably lower values over oceans, suggesting the impact of strong sources over the mainland. However, above the ABL (at 1500m), the latitudinal variations were quite weak, and this appears to be resulting from the impact of long-range transport. Comparison of the altitude profiles of MB over BoB off BBR with those obtained during the earlier occasion over the inland stations of Hyderabad and Kanpur showed similarities above ∼500m, with MB remaining around a steady value of ∼1 𝜇 g m−3. However, large differences are seen within the ABL. Even though the observed MB values are not unusually high, their near constancy in the vertical column will have important implications to radiative forcing.

    • On the marine atmospheric boundary layer characteristics over Bay of Bengal and Arabian Sea during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)

      Denny P Alappattu D Bala Subrahamanyam P K Kunhikrishnan K M Somayaji G S Bhat R Venkatesan C B S Dutt A Bagavath Singh V K Soni A S Tripathi

      More Details Abstract Fulltext PDF

      Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made during this campaign. The latitudinal variation of the surface layer turbulent fluxes is also described in detail.

    • Analysis of marine aerosol optical depth retrieved from IRS-P4 OCM sensor and comparison with the aerosol derived from SeaWiFS and MODIS sensor

      A K Mishra V K Dadhwal C B S Dutt

      More Details Abstract Fulltext PDF

      Aerosol optical depth is regularly derived from SeaWiFS and MODIS sensor and used by the scientific community in various climatic studies. In the present study an attempt has been made to retrieve the aerosol optical depth using the IRS-P4 OCM sensor data and a comparison has been carried out using few representative datasets. The results show that the IRS-P4 OCM retrieved aerosol optical depth is in good agreement with the aerosols retrieved from SeaWiFS as well as MODIS. The RMSE are found to be ± 0.0522 between OCM and SeaWIFS and ± 0.0638 between OCM and MODIS respectively. However, IRS-P4 OCM sensor retrieved aerosol optical depth is closer to SeaWiFS (correlation = 0.88, slope = 0.96 and intercept = −0.013) compared to MODIS (correlation = 0.75, slope = 0.91 and intercept = 0.0198). The mean percentage difference indicates that OCM retrieved AOD is +12% higher compared to SeaWiFS and +8% higher compared to MODIS. The mean absolute percentage between OCM derived AOD and SeaWiFS is found to be less (16%) compared to OCM and MODIS (20%).

    • Detection of snow melt and freezing in Himalaya using OSCAT data

      Rajashree V Bothale P V N Rao C B S Dutt V K Dadhwal

      More Details Abstract Fulltext PDF

      A study of the snow cover melt and freeze using Ku band Oceansat scatterometer (OSCAT) HH polarised backscatter coefficient (𝜎0HH) for 2011 and 2012 is reported for the Himalayas, which contain the world’s largest reserve of ice and snow outside polar regions. The analysis shows spatial and temporal inter-annual variations in the onset of melt/freeze across four regions (Upper Himalaya, Western Himalaya, Central Himalaya, and Eastern Himalaya), nine elevation bands and four aspect zones. A threshold based on temperature–𝜎0HH relation and average 𝜎0HH for the months January–March was used for melt/freeze detection. When the three consecutive images (6 days) satisfied the threshold, the day of first image was selected as melt onset/freeze day. The average melt onset dates were found to be March 11 ± 11 days for Eastern Himalaya, April 3 ± 18 days for Central Himalaya, April 16 ± 27 days for Western Himalaya, and May 12 ± 18 days for Upper Himalaya. Similarly average freeze onset dates were found to be August 23 ± 27 days for Eastern Himalaya, September 08 ± 24 days for Central Himalaya, August 27 ± 11 days for Western Himalaya, and September 13 ± 11 days for Upper Himalaya. All the zones experienced the melt onset earlier by around 20 days in 2011 at elevation above 5000 m. All the zones experienced freeze earlier in 2012, with onset being 18, 19, 11, and 21 days earlier in Eastern, Central, Western, and Upper Himalaya, respectively.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.