B S Gohil
Articles written in Journal of Earth System Science
Volume 94 Issue 3 November 1985 pp 237-247
Applying the method of ‘statistical linear regression’, atomspheric water vapour over oceanic areas has been estimated from the 19
Volume 107 Issue 1 March 1998 pp 33-43
Early prediction of onset of south west monsoon from ERS-1 scatterometer winds
U R Rao P S Desai P C Joshi P C Pandey B S Gohil B Simon
Detailed analysis of the surface winds over the Indian Ocean derived from ERS-1 scatterometer data during the years 1993 and 1994 has been used to understand and unambiguously identify the onset phase of south-west monsoon. Five day (pentad) averaged wind vectors for the period April to June during both years have been examined to study the exact reversal of wind direction as well as the increase in wind speed over the Arabian Sea in relation to the onset of monsoon over the Indian west coast (Kerala). The related upper level humidity available from other satellites has also been analysed.
The results of our analysis clearly show a consistent dramatic reversal in wind direction over the western Arabian Sea three weeks in advance of the onset of monsoon. The wind speed shows a large increase coinciding with the onset of monsoon. These findings together show the dominant role of sea surface winds in establishing the monsoon circulation. The study confirms that the cross equatorial current phenomenon becomes more important after the onset of monsoon.
Volume 111 Issue 3 September 2002 pp 247-256
A K Varma R M Gairola A K Mathur B S Gohil Vijay K Agarwal
In this paper, MSMR geophysical products like Integrated Water Vapour (IWV), Ocean Surface Wind Speed (OWS) and Cloud Liquid Water (CLW) in different grids of 50, 75 and 150 kms are compared with similar products available from other satellites like DMSP-SSM/I and TRMMTMI. MSMR derived IWV, OWS and CLW compare well with SSM/I and TMI finished products. Comparison of MSMR derived CLW with that derived from TMI and SSM/I is relatively in less agreement. This is possibly due to the use of 37 GHz in SSM/I and TMI that is highly sensitive to CLW, while 37 GHz channels are not available on MSMR. Monthly comparison of MSMR geophysical products with those from TMI is all carried out for climatological purpose. The monthly comparisons were much better compared to instantaneous comparisons. In this paper, details of the data analysis and comparison results are presented. The usefulness of the MSMR vis-à-vis other sensors is also discussed.
Volume 111 Issue 3 September 2002 pp 257-266
Rain rate measurements over global oceans from IRS-P4 MSMR
A K Varma R M Gairola Samir Pokhrel B S Gohil A K Mathur Vijay K Agarwal
In this paper rain estimation capability of MSMR is explored. MSMR brightness temperature data of six channels corresponding to three frequencies of 10, 18 and 21 GHz are colocated with the TRMM Microwave Imager (TMI) derived rain rates to find a new empirical algorithm for rain rate by multiple regression. Multiple correlation analysis involving various combinations of channels in linear and non-linear forms and rain rate from TMI is carried out, and thus the best possible algorithm for rain rate measurement was identified which involved V and H polarized brightness temperature measurements at 10 and 18 GHz channels. This algorithm explained about 82 per cent correlation (r) with rain rate, and 1.61 mm h-1 of error of estimation.
Further, this algorithm is used for generating global average rain rate map for two contrasting months of August (2000) and January (2001) of northern and southern hemispheric summers, respectively. MSMR derived monthly averaged rain rates are compared with similar estimates from TRMM Precipitation Radar (PR), and it was found that MSMR derived rain rates match well, quantitatively and qualitatively, with that from PR.
Volume 122 Issue 1 February 2013 pp 187-199
Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using
Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad
The OSCAR (ocean surface current analysis real-time),which is a product derived from various satellite observations,has been evaluated in the tropical Indian Ocean (TIO)in two di fferent ways.First,the OSCAR-derived monthly climatology has been compared with available drifter-derived climatology in the TIO.From the comparison of the two climatologies,one can infer that OSCAR product is able to capture the variabilities of the well-known surface current systems in the TIO reasonably well.Fourier analysis of the major current systems,as reproduced by OSCAR,shows that the dominant annual and semiannual periodicities,known to exist in these systems,have been faithfully picked up by OSCAR. Next,the evaluation has been carried out by comparing the OSCAR currents with currents measured by moored buoys.The zonal component of OSCAR-current is in good agreement with corresponding component of buoy-observed current with a correlation exceeding 0.7,while the match between the meridional components is poorer.The locations of the peaks of the mean and eddy kinetic energies are matching in both the climatologies,although the peak in the drifter climatology is stronger than the same in the OSCAR product.Finally,an important feature of Indian Ocean circulation,namely the reverse Wyrtki jet,occurring during anomalous dipole years,has been well-reproduced by OSCAR currents.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.