• Atta-ur Rahman

      Articles written in Journal of Earth System Science

    • Spatial analysis of landslide susceptibility using failure rate approach in the Hindu Kush region, Pakistan

      Ghani Rahman Atta-ur Rahman Sami Ullah Muhammad Miandad Andrew E Collins

      More Details Abstract Fulltext PDF

      This paper analyses and applies a spatio-statistical failure rate (SSFR) technique for landslide susceptibility zonation in the Hindu Kush region, Pakistan. The study area (Shahpur valley) is located in the eastern Hindu Kush mountain system. In Shahpur valley, land sliding is a recurrent and costly extreme event. Geologically, this region constitutes the youngest mountain systems and almost every year landslide-induced losses are reported. The frequency and intensity of landslide events is expected to further increase in future due to rapid population growth over the fragile slopes, infrastructural development and deforestation. In order to achieve objectives of the study, data were obtained from both primary and secondary sources. In Shahpur valley, an inventory of the past 300 landslide events of various sizes has been identified and marked on a SPOT satellite image of 2.5 m resolution. In order to identify the influence of landslide triggering factors, such as geology, tectonic structures, land use, slope angle, slope aspect, roads and streams, a univariate SSFR technique has been tested and applied for calculating the susceptibility score in each class of the selected parameters. Based on factor maps and cumulative score, the landslide susceptibility zones have been developed and validated appearing to be significantly reflecting the pattern of the past landslide events.

    • Flash flood susceptibility modelling using geomorphometric approach in the Ushairy Basin, eastern Hindu Kush

      Shakeel Mahmood Atta-Ur Rahman

      More Details Abstract Fulltext PDF

      This study focuses on flash flood susceptibility modelling using geomorphometric ranking approach in the Ushairy Basin. In the study area, flash floods are highly unpredictable and the worst hydrometeorological disaster. An advanced spaceborne thermal emission and reflection radiometer global digital elevation model was used as input data in a geographic information system environment to delineate the target basin. A total of 17 sub-basins were delimited using a threshold of 4 km$^{2}$. The attribute information of each sub-basin was analysed to compute the geomorphometric parameters by applying Hortonian and Strahler geomorphological models. The results were analysed and categorised into five classes using statistical techniques, and the rank score was assigned to each class of all parameters depending on their relation with flash flood risk. In this study, 16 parameters were analysed to quantify the geomorphometric number of each sub-basin depicting the degree of flash flood susceptibility. The geomorphometric number of each sub-basin was linked to the geo-database for spatial visualisation. The analysis reveals that extremely high, very high, high and moderate sub-basins susceptible to flash floods were spread over an area of 55%, 8.5%, 23.7%, and 11.5%, respectively. It was found that out of total settlements, 53% are located in the extremely highly and very highly susceptible sub-basins. In the study area, the upper reaches are characterised by snow-covered peaks, steep slopes and high drainage densities (>1.7 km/km$^{2}$). The analysis further indicated that the flash flood susceptibility increases with the increase in area, relief and relief ratio of the sub-basins. Model accuracy was assessed using primary data regarding past flood damages and human fatalities. Similarly, socio-demographic conditions of each sub-basin were also compared and linked to the extent of flash flood susceptibility. This study may assist the district government and district disaster management authority of Dir upper to initiate flood risk reduction strategies in highly susceptible zones of the Ushairy Basin.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.