• Ashwini Kumar Choudhary

      Articles written in Journal of Earth System Science

    • Geochemistry and petrogenesis of Biabanak-Bafq mafic magmatism: Implication for the evolution of central Iranian terrane

      Monireh Poshtkoohi Talat Ahmad Ashwini Kumar Choudhary

      More Details Abstract Fulltext PDF

      Precambrian magmatism in the Biabanak-Bafq district represents an extensive sequence of mafic magmatic rocks. Major, trace and rare earth elements reveal that the low-Ti basement mafic rocks are magnesium tholeiite and low-Ti cover a mafic rock belongs to Fe-tholeiite, whereas, the high-Ti alkaline mafic rocks, as well as dolerites, show much more Fe–Ti enrichment. Primitive mantle normalized trace element patterns show a relative enrichment of LREE and LILE and depletion of HFSE, but have an equally distinct continental signature reflected by marked negative Nb, Sr, P, and Ti anomalies. The composition of the intrusive rocks is consistent with fractional crystallization of olivine +/- clinopyroxene +/- plagioclase, whereas variations in the Sr and Nd isotope compositions suggest heterogeneous sources and crustal contamination. Low-Ti group samples contain a crustal signature in the form of high La/Yb, Zr/Nb, and negative εNd values. In contrast, high-Ti mafic magmatic rocks display an increase in La/Yb with a decrease in Proterozoic alkaline rocks recognized across the central Iran. The presence of diverse mafic magmatic rocks probably reflects heterogeneous nature of sub-continental lithospheric mantle (SCLM) source. The mafic magmatism largely represents magmatic arc or rift tectonic setting. It is suggested that the SCLM sources were enriched by subduction processes and asthenospheric upwelling.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.