Anil Kumar
Articles written in Journal of Earth System Science
Volume 97 Issue 1 July 1988 pp 107-114
Late Cretaceous mafic dykes in the Dharwar craton
Anil Kumar Y J Bhaskar Rao V M Padma Kumari A M Dayal K Gopalan
Palaeomagnetic, geochemical and geochronological studies have been conducted on a set of dolerite dykes intruding the Peninsular gneisses near Huliyurdurga town, Karnataka, as a reconnaissance survey indicated a Cretaceous age for them. The dykes are mainly tholeiitic in composition with their 87Sr/86Sr ratios tightly clustered around 0·7045. Their palaeomagnetic data (
Volume 109 Issue 1 March 2000 pp 57-65
Y J Bhaskar Rao Anil Kumar A B Vrevsky R Srinivasan G V Anantha Iyer
Whole-rock Sm-Nd isochron ages are reported for two stratiform meta-anorthosite complexes emplaced into the Archean supracrustal-gneiss association in the amphibolite facies terrain around Holenarsipur, in the Dharwar craton, South India. While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c. 2.5 Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 Ga,ɛNd0.82 ± 0.78 for the Honnavalli metaanorthosite complex from a supracrustal enclave in the low-strain zone, and 2.495 ± 0.033 Ga, ɛNd = -2.2 ± 0.3 for the Dodkadnur meta-anorthosites from the high-strain southern arm of the Holenarsipur Supracrustal Belt (HSB). We interpret these results as indicating that the magmatic protoliths of both meta-anorthosite complexes were derived from a marginally depleted mantle at c. 3.29 Ga but only the Dodkadnur rocks were isotopically reequilibrated on a cm-scale about 800 Ma later presumably due to the development of strong penetrative fabrics in them during Late Archean thermotectonic event around 2.5 Ga. Our results set a younger age limit at c. 3.29 Ga for the supracrustal rocks of the HSB in the Dharwar craton.
Volume 111 Issue 2 June 2002 pp 125-131
Anil Kumar Sarvajit Singh Jagdish Singh
Static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined strike-slip fault situated in one of the half-spaces is studied analytically and numerically. Closed-form algebraic expressions for the displacement at any point of the medium are obtained. The variation of the displacement at the interface with the horizontal distance from the fault is studied. The effect of anisotropy on the displacement field is examined. It is found that while the anisotropy of the source half-space has a significant effect on the displacement at the interface, the anisotropy of the other half-space has only a marginal effect.
Volume 114 Issue 1 February 2005 pp 97-103
Deformation of two welded elastic half-spaces due to a long inclined tensile fault
Anil Kumar Sarva Jit Singh Jagdish Singh
The calculation of the deformation caused by shear and tensile faults is necessary for the investigation of seismic and volcanic sources. The solution of the two-dimensional problem of a long inclined shear fault in two welded half-spaces is well known. The purpose of this note is to present the corresponding solution for a tensile fault. Closed-form analytical expressions for the Airy stress function for a tensile line source in two welded half-spaces are first obtained. These expressions are then integrated analytically to derive the Airy stress function for a long tensile fault of arbitrary dip and finite width. Closed-form analytical expressions for the displacements and stresses follow immediately from the Airy stress function. These expressions are suitable for computing the displacement and stress fields around a long inclined tensile fault near an internal boundary.
Volume 126 Issue 4 June 2017 Article ID 0055
Vinay Kumar Gaddam Anil V Kulkarni Anil Kumar Gupta
Seasonal sensitivity characteristics (SSCs) were developed for Naradu, Shaune Garang, Gor Garang and Gara glaciers, Western Himalaya to quantify the changes in mean specific mass balance using monthly temperature and precipitation perturbations. The temperature sensitivities were observed high during summer (April–October) and precipitation sensitivities during winter months (November–March), respectively. The reconstructed mass balance correlates well with the field and remote sensing measurements, available between 1980 and 2014. Further, SSCs were used with the monthly mean temperatures and precipitation estimates of ERA 20CM ensemble climate reanalysis datasets to reconstruct the specific mass balance for a period of 110 years, between 1900 and 2010. Mass balance estimates suggest that the Shaune Garang, Gor-Garang and Gara glaciers have experienced both positive and negative mass balance, whereas the Naradu glacier has experienced only negative mass balance since 1900 AD. Further, a cumulative loss of −133±21.5 m.w.e was estimated for four glaciers during the observation period. This study is the first record from Indian Himalaya in evaluating the mass balance characteristics over a century scale.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.